-
2014
Observations of ion-scale density turbulence of relative amplitude are available on the Mega Amp Spherical Tokamak (MAST) using a 2D (8 radial × 4 poloidal channel) imaging Beam Emission Spectroscopy (BES) diagnostic. Spatial and temporal characteristics of this turbulence, i.e., amplitudes, correlation times, radial and perpendicular correlation …
-
2014
The type I ELMy H-mode is the baseline operating scenario for ITER. While it is known that the type I ELM ultimately results from the peeling-ballooning instability, there is growing experimental evidence that a mode grows up before the ELM crash that may modify the edge plasma, which then leads to the ELM event due to the peeling-ballooning mode. …
-
2014
ELM mitigation has been demonstrated in MAST using resonant magnetic perturbations (RMPs) with toroidal mode number, n RM P = 2, 3, 4, 6. It has been observed that the mitigated ELM frequency increases with the amplitude of the applied field provided it is above a critical threshold. This threshold value depends on the mode number of the RMP, with …
-
2013
The pedestal profile measurements in high triangularity JET plasmas show that with low fuelling the pedestal width decreases during the ELM cycle and with high fuelling it stays constant. In the low fuelling case the pedestal pressure gradient keeps increasing until the ELM crash and in the high fuelling case it initially increases then saturates d…
-
2013
Sustained ELM mitigation has been achieved using RMPs with a toroidal mode number of n=4 and n=6 in lower single null and with n=3 in connected double null plasmas on MAST. The ELM frequency increases by up to a factor of eight with a similar reduction in ELM energy loss. A threshold current for ELM mitigation is observed above which the ELM freque…
-
2012
The application of resonant magnetic perturbations (RMPs) with a toroidal mode number of n=4 or n=6 to lower single null plasmas in the MAST tokamak produces up to a factor of 5 increase in Edge Localized Mode (ELM) frequency and reduction in plasma energy loss associated with type-I ELMs. A threshold current for ELM mitigation is observed above wh…
-
2012
The application of resonant magnetic perturbations with toroidal mode number n = 4 or n = 6 is observed to result in a significant increase in ELM frequency, despite a reduction in the edge pressure gradient. A picture for how type-I ELMs are mitigated, or destabilised, when magnetic perturbations are applied is proposed. Despite the magnetic pertu…
-
2012
Electrostatic gyrokinetic analyses are presented for an L-mode discharge with an internal transport barrier, from the spherical tokamak, MAST. Local and global microstability analysis finds similar linear growth rates for ion temperature gradient (ITG) driven modes. When the electron response is assumed to be adiabatic, growth rates are found to be…
-
2012
A stability analysis using equilibria from CORSICA transport simulations finds that the maximum stable pedestal pressure in ITER 15 MA baseline plasma is 110 kPa corresponding to a pedestal temperature of 5.9 keV. The height of the stable pedestal is robust for the assumption of the pedestal height varying only by about 10% if the width of the pede…
-
2012
Plasma equilibria reconstructed from the Mega-Amp Spherical Tokamak have sufficient resolution to capture plasma evolution during the short period between edge-localized modes (ELMs). Immediately after the ELM, steep gradients in pressure, P , and density, n e , form pedestals close to the separatrix, and they then expand into the core. Local gyrok…
Showing 41 - 50 of 59 UKAEA Paper Results