-
UKAEA-CCFE-PR(24)2502023
In the quest of new materials that can withstand severe irradiation and mechanical extremes for advanced applications (e.g. fission & fusion reactors, space applications, etc.), design, prediction and control of advanced materials beyond current material designs become paramount. Here, through a combined experimental and simulation methodol…
-
UKAEA-CCFE-PR(24)2492023
Short-range order (SRO) in multicomponent concentrated alloys affects their mechanical response. Hence, is paramount to understand how composition modifies the chemical ordering in the system to design materials with optimal properties. We present here a methodology to predict the SRO and thermodynamic properties in chemically complex systems an…
-
UKAEA-CCFE-PR(24)2422022
Spinodal phase separation in SMART materials based on binary W-Cr with alloying 1 elements Y and Zr is systematically investigated by a combination of Density Functional Theory with Cluster Expansion Hamiltonian and large-scale Monte Carlo simulations with thermodynamic integration. Comparing alloying of Zr with those from Y, it is shown that there…
-
UKAEA-CCFE-PR(23)1162022
Using exchange Monte Carlo (MC) simulations based on an ab initio-parameterized Cluster Expansion (CE) model, we explore the phase stability of low-Cr Fe-Cr alloys as a function of vacancy (Vac), carbon, and nitrogen interstitial impurity content. To parameterise the CE model, we perform density functional theory calculations for more than 1600 …
-
UKAEA-CCFE-PR(23)1102022
The realisation of fusion energy depends on the development of advanced materials for challenging environments. Rapid screening of prototype alloys using magnetron sputtering and high throughput characterisation is currently being applied to candidate W alloys with improved mechanical performance, reduced activation and tolerance to damage from neu…
-
UKAEA-CCFE-PR(22)492022
In the quest of new materials that can withstand severe irradiation and mechanical extremes for advanced applications (e.g. fission reactors, fusion devices, space applications, etc), design, prediction and control of advanced materials beyond current material designs become a paramount goal. Here, though a combined experimental and simula…
-
UKAEA-CCFE-PR(22)412022
-
UKAEA-CCFE-PR(22)322022
Vanadium base alloys represent potentially promising candidate structural materials for use in nuclear fusion reactors due to vanadium’s low activity, high thermal strength, and good swelling resistance. In this work, the mechanical properties of the current frontrunner vanadium base alloy, V-4Cr-4Ti, have been interrogated using in-situ high ene…
-
UKAEA-CCFE-PR(23)922021
W-Cr-Y smart alloys are potential material candidates for plasma facing components due to their protective behaviour during the loss-of-coolant accident (LOCA), while maintaining beneficial properties of W during the normal operation of the fusion power plant. During plasma exposure the lighter alloying elements are preferentially sputtered at t…
-
UKAEA-CCFE-PR(23)912021
Understanding how properties of materials change due to nuclear transmutations is a major challenge for the design of structural components for a fusion power plant. In this study, by combining a first-principles matrix Hamiltonian approach with thermodynamic integration we investigate quasisteady state configurations of multi-component alloys, …
Showing 1 - 10 of 31 UKAEA Paper Results