-
UKAEA-CCFE-PR(22)392022
In the absence of official standards and guidelines for nuclear fusion plants, fusion designers adopted, as far as possible, well-established standards for fission-based nuclear power plants (NPPs). This often implies interpretation and/or extrapolation, due to differences in structures, systems and components, materials, safety mitigation systems,…
-
UKAEA-CCFE-CP(23)342021
The characteristically intense neutron source generated in deuterium-tritium (DT) fusion power presents notable challenges for materials comprising the structure of the device which are exposed to them. These include radiation damage effects leading to degradation of structural properties with impact on maintenance and replacement frequency, but…
-
UKAEA-CCFE-CP(23)222021
Previous studies of the European Demonstration fusion reactor concept (DEMO) have shown that the expected amounts of radioactive waste at end of life (EOL) are of the order of 104 tonnes. These studies also suggested that comparable amounts of waste will be classified as low level waste (LLW) and intermediate level waste (ILW) 100 yea…
-
UKAEA-CCFE-PR(23)922021
W-Cr-Y smart alloys are potential material candidates for plasma facing components due to their protective behaviour during the loss-of-coolant accident (LOCA), while maintaining beneficial properties of W during the normal operation of the fusion power plant. During plasma exposure the lighter alloying elements are preferentially sputtered at t…
-
UKAEA-CCFE-PR(21)832021
This Review considers current Zr alloys and opportunities for advanced zirconium alloys to meet the demands of a structural material in fusion reactors. Zr based materials in the breeder blanket offer the potential to increase the tritium breeding ratio above that of Fe, Si and V based materials. Current commercial Zr alloys might be considered …
-
UKAEA-CCFE-PR(21)682021
Using the notion of eigenstrain produced by the defects formed in a material exposed to high energy neutron irradiation, we develop a method for computing macroscopic elastic stress and strain arising in components of a fusion power plant during operation. In a microstructurally isotropic material, the primary cause of macroscopic elastic stress an…
-
UKAEA-CCFE-PR(21)532021
The high anisotropy in the thermal conductivity of lithium metatitanate, Li2TiO3, is shown using the classical simulation method of Molecular Dynamics (MD). The thermal conductivity along the z-direction is markedly lower than that in x and y. This characteristic could be exploited to favourably adjus…
-
UKAEA-CCFE-PR(21)512021
A development plan for validation of functional principles is defined to support the challenges of mock-up manufacturing and testing. It is aimed to develop the process and infrastructure for qualifying fusion components for the limiters in the European DEMO. The limiters are components that define the plasma boundary by direct contact during norma…
-
UKAEA-CCFE-PR(21)432021
The chapter is devoted to materials used in controlled fusion facilities. Material solutions for magnetic confinement fusion devices and inertial confinement fusion facilities are described. Fusion materials have to preserve their performance often under extremely harsh conditions characterized by intensive particle fluxes, high levels of neutron i…
-
UKAEA-CCFE-PR(21)422021
Tungsten and tungsten alloys are being considered as leading candidates for structural and functional materials in future fusion energy devices. The most attractive properties of tungsten for the design of magnetic and inertial fusion energy reactors are its high melting point, high thermal conductivity, low sputtering yield and low long-term di…
Showing 21 - 30 of 85 UKAEA Paper Results