#### D.J.M. King A.J. Knowles D. Bowden M.R. Wenman S. Capp M. Gorley J. Shimwell L. Packer M.R. Gilbert A. Harte

This Review considers current Zr alloys and opportunities for advanced zirconium alloys to meet the demands of a structural material in fusion reactors. Zr based materials in the breeder blanket offer the potential to increase the tritium breeding ratio above that of Fe, Si and V based materials. Current commercial Zr alloys might be considered …

Preprint Published#### L. W. Packer P. Batistoni S. C. Bradnam S. Conroy M. Fabbri Z. Ghani M. R. Gilbert S. Jednorog E. Laszynska D. Leichtle I. Lengar M. Majerle J. W. Mietelski C. R.Nobs O. Ogorodnikova M. Pillon M. I. Savva I. E. Stamatelatos T. Vasilopoulou R. Villari A. Wojcik-Gargula R. Worrall JET Contributors

Understanding the effects of neutron irradiation of materials is one of the outstanding issues in the development of fusion technologies. The impact of this work derives from the opportunity, for the first time in a tokamak operating with a D-T plasma, to deliver experimental results which directly link to the nuclear characteristics of real sample…

Preprint Published#### A.Valentine N.Fonnesu B.Bienkowska E.Laszynska D.Flammini R.Villari G.Mariano T.Eade T.Berry L.Packer

As a demonstration fusion power plant, EU DEMO has to prove the maturity of fusion technology and its viability for electricity production. The central requirements for DEMO rest on its capability to generate significant net electric power to the grid (300MW to 500 MW) safely and consistently. Plant availability and lifetime will approach that of a…

Preprint Published#### L. W. Packer P. Batistoni B. Colling K. Drozdowicz M. Fabbri Z. Ghani M. R Gilbert S. Jednorog E. Laszynska D. Leichtlef J.W.Mietelski C.R. Nobs M. Pillon I.E. Stamatelatos T. Vasilopoulou R. Villari A. Wójcik-Gargula JET Contributors

The planned high-profile experiments during 2020 at the Joint European Torus (JET), notably including a deuterium-tritium (DT) experimental phase, are expected to produce large neutron yields, in the region of 1021 neutrons. The scientific objectives are linked with a technology programme, WPJET3, to deliver the maximum scientific and…

Preprint#### T. A. Berry C. R. Nobs A. Dubas R. Worrall T. Eade J. Naish L. W. Packer

The accurate modelling of the activation of flowing material in a fusion reactor, such as coolant water or lithium-lead breeder, has important safety and shielding implications. Two codes developed at UKAEA which account for neutron flux variation have been investigated for the potential for incorporating computational fluid dynamics (CFD) and c…

Preprint Published#### Chantal Nobs Jonathon Naish Lee Packer Mario Pillon Maurizio Angelone Stefano Loreti Paolo Del Prete Jesus Izquierdo Raul Pampin Luca Zanibellato

During ITER operations the water coolant flowing through components such as the first wall, blanket modules, divertor cassettes and vacuum vessel will become activated by high energy neutrons. Two key neutron-induced reactions will occur with oxygen in the water producing the radioactive isotopes, N-16 and N-17, which have relatively short half-liv…

Preprint Published#### C.R. Nobs L. W. Packer P. Batistoni B. Colling Z. Ghani M. Gilbert S. Loreti K. Mergia S. Mesoloras I. Michelakaki M. Pillon M. I. Savva I. E. Stamatelatos K. Triantou T. Vasilopoulou

In future fusion power plants, such as DEMO, D-T neutron emission is predicted to exceed 1×1021 neutrons/second. Accurately monitoring neutron energies and intensities will be the primary method for estimating fusion power, and calculating key parameters, including the tritium breeding ratio and nuclear heating. The Novel Neutron Det…

Preprint Published#### L. W. Packer S. Allan S. B. Bradnam M. R. Gilbert T. Stainer

The measurement of the fusion neutron yield provides a direct relationship with fusion power and is hence an important measure of experimental performance. In pulsed neutron emission scenarios, such as those experienced in dense plasma focus devices, inertial confinement fusion and even in short-pulse tokamak experiments, considerations of the dyna…

Preprint Published#### R. Worrall B. Colling M. R. Gilbert E. Litherland-Smith C. R. Nobs L. W. Packer C. Wilson A. Zohar

Spectrum unfolding is a key tool used together with diagnostics in the determination of nuclear fields that are associated with a range of nuclear technologies spanning fusion, fission, nuclear medicine and accelerator domains. The underlying process requires a mathematical method for solving the Fredholm integral equation of the first kind. This p…

Preprint Published#### M.R. Gilbert L.W. Packer T. Stainer

Molybdenum is a potential material for future nuclear fusion experiments and power plants. It has good thermo-mechanical properties and can be readily fabricated, making it attractive as an alternative material to tungsten (the current leading candidate) for high neutron flux and high thermal load regions of fusion devices. Unfortunately, exposu…

Preprint Published