-
UKAEA-CCFE-PR(23)1912023
ITER is of key importance in the European fusion roadmap as it aims to prove the scientific and technological feasibility of fusion as a future energy source. The EUROfusion consortium of labs is contributing to the preparation of ITER scientific exploitation and operation and aspires to exploit ITER outcomes in view of DEMO. The paper provides …
-
UKAEA-CCFE-CP(23)672023
The fusion reaction between deuterium and tritium, D(T,n)4He is the main source of energy in future thermonuclear reactors. Charged fusion products of this reaction, α-particles (4He-ions), are born with an average energy of 3.5 MeV. Transferring energy to the thermal plasma during their slowing down, the…
-
UKAEA-CCFE-CP(23)642023
The fusion reaction between deuterium and tritium, D(T,n)4He is the main source of energy in future thermonuclear reactors. Charged fusion products of this reaction, α-particles (4He-ions), are born with an average energy of 3.5 MeV. Transferring energy to the thermal plasma during their slowing down, the…
-
UKAEA-CCFE-PR(23)1212023
In the paper we present an overview of interpretive modelling of a database of JET-ILW 2021 D-T discharges using the TRANSP code. Our main aim is to assess our capability of computationally reproducing the fusion performance of various D-T plasma scenarios using different external heating and D-T mixtures, and understand the performance driving mec…
-
UKAEA-CCFE-PR(23)102022
The fusion-born alpha-particle heating in magnetically confined fusion machines is a high priority subject for study. The self-heating of thermonuclear fusion plasma by alpha-particles was observed in recent deuterium-tritium (D-T) experiments on the Joint European Torus (JET). This observation was possible by conducting so-called “af…
-
UKAEA-CCFE-CP(23)342021
The characteristically intense neutron source generated in deuterium-tritium (DT) fusion power presents notable challenges for materials comprising the structure of the device which are exposed to them. These include radiation damage effects leading to degradation of structural properties with impact on maintenance and replacement frequency, but…
-
UKAEA-CCFE-CP(23)122020
The planned high-profile experiments during 2020 at the Joint European Torus (JET), notably including a deuterium-tritium (DT) experimental phase, are expected to produce large neutron yields, in the region of 1021 neutrons. The scientific objectives are linked with a technology programme, WPJET3, to deliver the maximum scientific and…
-
UKAEA-CCFE-CP(20)1082020
In future fusion power plants, such as DEMO, D-T neutron emission is predicted to exceed 1×1021 neutrons/second. Accurately monitoring neutron energies and intensities will be the primary method for estimating fusion power, and calculating key parameters, including the tritium breeding ratio and nuclear heating. The Novel Neutron Det…
-
UKAEA-CCFE-CP(23)082019
Conventional means of fast neutron detection typically involves moderation and subsequent detection of thermal neutrons via gas filled detectors such as He-3, or alternatively indirect neutron detection via gamma activation systems. Whilst these are often the most conclusive systems for neutron detection, inherent timing and energy information asso…
-
UKAEA-CCFE-PR(18)792018
This paper reports new activities conducted as part of the JET technology programme under the WP-JET3 ACT sub-project collaboration. The aim of the sub-project is to take advantage of the significant 14 MeV neutron fluence expected during JET operations to irradiate samples of materials that will used in the manufacturing of main ITER tokamak compo…
Showing 1 - 10 of 14 UKAEA Paper Results