-
CCFE-PR(15)1252015
The ball pen probe (BPP) technique is used successfully to make profile measurements of plasma potential, electron temperature, and radial electric field on the Mega Amp Spherical Tokamak. The potential profile measured by the BPP is shown to significantly differ from the floating potential both in polarity and profile shape. By combining the BPP p…
-
2014
It is known that magnetic perturbations can mitigate edge localized modes (ELMs) in experiments, for example, MAST [Kirk et al., Nucl. Fusion 53, 043007 (2013)]. One hypothesis is that the magnetic perturbations cause a three dimensional corrugation of the plasma and this corrugated plasma has different stability properties to peeling-ballooning mo…
-
2014
The high pressure gradients in the edge of a tokamak plasma can lead to the formation of explosive plasma instabilities known as edge localised modes (ELMs). The control of ELMs is an important requirement for the next generation of fusion devices such as ITER. Experiments performed on the Mega Amp Spherical Tokamak (MAST) at Culham have shown that…
-
2014
Optimal correction of the intrinsic error field (EF) by the correction coils in MAST is numerically studied, based on linear, full MHD plasma response computed in full toroidal geometry. Various optimisation criteria are proposed, and the results are compared with empirical optima from representative error field correction (EFC) experiments. The tw…
-
2014
The misalignment of field coils in tokamaks can lead to toroidal asymmetries in the magnetic field, which are known as intrinsic error fields. These error fields often lead to the formation of locked modes in the plasma, which limit the lowest density that is achievable. The intrinsic error fields on MAST have been determined by the direct measurem…
-
2014
When resonant magnetic perturbations are applied in MAST, the plasma edge boundary experiences a three dimensional distortion, which can be a few percent of the minor radius in amplitude, in good agreement with ideal 3d equilibrium modelling. This displacement occurs in plasmas both with radial position feedback control applied, and without feedbac…
-
2014
The power load to the divertor surfaces is a key concern for future devices such as ITER, due to the thermal limits on the material surface. One factor that characterises the heat flux to the divertor is the fall off length in the SOL, which recent empirical scalings have shown could be as small as 1 mm. These predictions are based on a multi-machi…
-
2014
The type I ELMy H-mode is the baseline operating scenario for ITER. While it is known that the type I ELM ultimately results from the peeling-ballooning instability, there is growing experimental evidence that a mode grows up before the ELM crash that may modify the edge plasma, which then leads to the ELM event due to the peeling-ballooning mode. …
-
2014
ELM mitigation has been demonstrated in MAST using resonant magnetic perturbations (RMPs) with toroidal mode number, n RM P = 2, 3, 4, 6. It has been observed that the mitigated ELM frequency increases with the amplitude of the applied field provided it is above a critical threshold. This threshold value depends on the mode number of the RMP, with …
-
2014
Edge localised modes (ELMs) are a concern for future devices, such as ITER, due to the large transient heat loads they generate on the divertor surfaces which could limit the operational lifetime of the device. This paper discusses the application of resonant magnetic perturbations (RMPs) as a mechanism for ELM control on MAST. Experiments have bee…
Showing 71 - 80 of 128 UKAEA Paper Results