-
UKAEA-CCFE-CP(23)512022
The EU DEMO power plant is the final stage of the EUROfusion Fusion Technology Programme’s route to commercially viable electricity supply [1]. The selection of apposite technologies for DEMO power plant sub-systems is essential. The breeding blanket, responsible for absorption of nuclear energy, tritium fuel production and a substantial proporti…
-
UKAEA-CCFE-CP(23)362022
To make informed decisions during the concept selection activities of a fusion power plant it is necessary to evaluate the impact of uncertainties on the feasibility and performance of each concept. A framework for uncertainty quantification and sensitivity analysis has been developed for the PROCESS systems code to allow the direct comparison o…
-
UKAEA-CCFE-PR(22)502022
Fusion power plant designs based on magnetic confinement, such as the tokamak design, offer a promising route to sustainable fusion power but require robust exhaust solutions capable of tolerating intense heat and particle fluxes from the plasma to material surfaces. Turbulent plasma transport in the divertor volume – the region where the plasma-…
-
UKAEA-CCFE-PR(22)242022
The accurate and efficient mapping of the radiation environment in a nuclear fusion reactor requires the most advanced radiation transport tools. The Monte Carlo method has long been deployed to deal with the complexity of fusion relevant geometries, with MCNP the adopted industry standard code among the European and wider international communit…
-
UKAEA-CCFE-PR(22)212022
This paper describes the development of electromagnetic plasma burn-through model. Full circuit equations describing the currents in solenoid, poloidal field coil, and toroidally conducting passive structure have been integrated into the differential equation system of the plasma energy and particle balances in DYON. This enables consistent calcula…
-
UKAEA-CCFE-PR(24)2392021
One of the main capabilities of Atom Probe Tomography (APT) is the ability to not only identify but characterise early stages of precipitation at scales that are not achievable by other techniques. The most popular method, based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN), is used extensively in many branches of r…
-
UKAEA-STEP-CP(23)032021
The application of dc magnetic field to a 2G high temperature superconducting (HTS) tape can reduce the critical current Ic of the tape, without driving the material normal. This property can be used in the development of HTS switching elements through so-called Jc(B) switching. The design of a dc magnetic field switch is reported, in both singl…
-
UKAEA-CCFE-CP(21)062021
In this work we provide experimental insights into the impact of plasma-molecule interactions on divertor detachment by applying new spectroscopic analysis techniques to the hydrogen Balmer line series to investigate how both atom and plasma-molecule interactions impact particle balance. Our analysis on a representative L-mode TCV density ramp dis…
-
UKAEA-CCFE-PR(21)492021
Using a combination of simulated data and pyrite isotopic reference materials, we have refined a methodology to obtain quantitative δ34S measurements from atom probe tomography (APT) datasets. This study builds on previous attempts to characterize relative 34S/32S ratios in gold containing pyrite using APT. We have also improved our understand…
-
2020
A robust impurity detection and tracking code, able to generate large sets of dust tracks from tokamak camera footage, is presented. This machine learning–based code is tested with cameras from the Joint European Torus, Doublet-III-D, and Magnum-PSI and is able to generate dust tracks with a 65–100% classification accuracy. Moreover, the number…
Showing 21 - 30 of 41 UKAEA Paper Results