-
UKAEA-STEP-PR(24)092024
The STEP Prototype Powerplant (SPP) will be a first of a kind powerplant – its prime objective is to export electrical power, to the grid, above 100MWe. As part of a wider issue, addressing the STEP concept design, this paper seeks to explore how electrical power will be generated from a Spherical Tokamak heat source. Accordingly, the followin…
-
UKAEA-CCFE-PR(21)772021
The optimum conditions for access to and sustainment of H-mode plasmas and their expected plasma parameters in the Pre-Fusion Power Operation 1 (PFPO-1) phase of the ITER Research Plan, where the additional plasma heating will be provided by 20 MW of Electron Cyclotron Heating (ECH), are assessed in order to identify key open R&D issues. The as…
-
UKAEA-CCFE-PR(21)772021
The optimum conditions for access and sustainment of H-mode plasmas and their expected plasma parameters in the Pre-Fusion Operation 1 (PFPO-1) phase of the ITER Research Plan, where the additional plasma heating will be provided by 20 MW of Electron Cyclotron Heating (ECH), are assessed. The assessment is performed on the basis of empirical and…
-
UKAEA-CCFE-CP(20)792018
The Chinese Fusion Engineering Test Reactor (CFETR) bridges the gap between ITER and a demonstration fusion power plant (DEMO). The primary objectives of CFETR are: demonstrate tritium self-sufficiency, ~1GW fusion power, operate in steady-state and have a duty cycle of 0.3-0.5 [1]. CFETR is in the pre-conceptual design phase and is currently envis…
-
UKAEA-CCFE-CP(19)452019
Spherical Tokamaks offer a number of potential advantages for a future fusion power plant. They have a high ratio of thermal to magnetic field pressure (beta) and strong flows, either of which could result in reduced turbulence. Fewer Toroidal Field (TF) coils and a different geometry offers the potential for new methods of remote maintenance …
-
UKAEA-CCFE-CP(19)272019
The ability to describe the essential physics and technology elements needed to robustly simulate the operation of ITER is critical to being able to model the plasma scenarios that will run in ITER. In this paper, the Integrated Modelling & Analysis Suite (IMAS) is used to simulate the 15 MA DT baseline scenario operation, including a descripti…
-
UKAEA-CCFE-PR(19)752019
The evolution of the JET high performance hybrid scenario, including central accumulation of the tungsten (W) impurity, is reproduced with predictive multi-channel integrated modelling over multiple confinement times using first-principle based models. 8 transport channels are modelled predictively, with self-consistent sources, radiation and magne…
-
UKAEA-CCFE-CP(18)022018
-
CCFE-PR(16)052016
PROCESS is a reactor systems code it assesses the engineering and economic viability of a hypothetical fusion power station using simple models of all parts of a reactor system. PROCESS allows the user to choose which constraints to impose and which to ignore, so when evaluating the results it is vital to study the list of constraints used. New …
-
CCFE-PR(17)272015
Power plant studies using systems codes allow the optimisation of designs to maximise or minimise some figure of merit: fusion power gain or cost of electricity, for example. The code should trade off between parameters to find the optimum whilst producing a solution consistent with physics and technology limitations. This paper describes the recen…
Showing 1 - 10 of 19 UKAEA Paper Results