-
UKAEA-CCFE-PR(25)3802025
This Roadmap article addresses the critical and multifaceted challenge of plasma-facing component (PFC) damage caused by runaway electrons (REs) in tokamaks, a phenomenon that poses a significant threat to the viability and longevity of future fusion reactors such as ITER and DEMO. The dramatically increased RE production expected in future high-cu…
-
UKAEA-CCFE-PR(25)3792025
A robust disruption mitigation system (DMS) requires accurate characterization of key disruption timescales, one of the most notable being the thermal quench (TQ). Recent modeling of shattered pellet injection (SPI) into ITER plasmas, using JOREK and INDEX, suggests long TQ durations (6–10 ms) and slow cold front propagation due to the large p…
-
UKAEA-CCFE-PR(24)2282024
This work presents a system upgrade of the High Resolution Thomson Scattering (HRTS) diagnostic on JET that allows it to measure low temperature (1 to 500 eV) plasma pre- and post-Thermal quench (TQ), which would help to further the understanding of the physics in SPI experiments. The upgrade was done by connecting optic fibres from the original…
-
UKAEA-CCFE-PR(24)2472023
The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with the ITER-like Be/W wall. The development started in pure Deuterium with refinement of the plasma current, and toroidal magnetic field choices and succeeded in solving the heat load challeng…
-
UKAEA-CCFE-PR(19)752019
The evolution of the JET high performance hybrid scenario, including central accumulation of the tungsten (W) impurity, is reproduced with predictive multi-channel integrated modelling over multiple confinement times using first-principle based models. 8 transport channels are modelled predictively, with self-consistent sources, radiation and magne…
-
UKAEA-CCFE-CP(18)022018
Showing 1 - 6 of 6 UKAEA Paper Results
Page 1 of 1