-
UKAEA-CCFE-PR(23)1522023
This article presents an in-depth study of the sequence of events leading to density limit disruption in J-TEXT tokamak plasmas, with an emphasis on boudary turbulent transport and the high-field-side high-density (HFSHD) front. These phenomena were extensively investigated by using Langmuir probe and Polarimeter-interferometer diagnostics. The res…
-
UKAEA-CCFE-PR(23)1222023
A fusion power plant requires not only the control of the high energy plasma but also advanced techniques for maintenance and assembly in order to generate electricity consistently and safely. Laser welding is a promising technique for cutting and joining pipes and in-vessel components made of Eurofer97, a European baseline structural material. How…
-
UKAEA-CCFE-PR(23)1742022
Understanding the effects of interfacial micro-structures/-defects such as voids, grain boundaries (GB) and partial recrystallization (Rx) is critical to achieving superior mechanical properties for safety-critical parts. These features may appear during advanced manufacturing processes such as sintering, additive manufacturing (AM), and diffusi…
-
UKAEA-CCFE-PR(22)512022
Stainless-steel 316L is one of the widely used structural materials in the nuclear industry, because of its excellent corrosion resistance and mechanical properties. However, very few researches can be found on its viscoplastic behavior and microstructure evolution at warm and hot deformation conditions, which hinder the possible applicat…
-
UKAEA-CCFE-PR(22)492022
In the quest of new materials that can withstand severe irradiation and mechanical extremes for advanced applications (e.g. fission reactors, fusion devices, space applications, etc), design, prediction and control of advanced materials beyond current material designs become a paramount goal. Here, though a combined experimental and simula…
-
UKAEA-CCFE-PR(22)422022
Manufacturing austenite stainless steels (ASSs) using additive manufacturing (AM) is of great interest for cryogenic applications. Here, the mechanical and microstructural responses of a 316L ASS built by laser powder-bed-fusion (L-PBF) were revealed by performing in situ neutron diffraction tensile tests at the low-temperature range (from 373 to 1…
-
UKAEA-RACE-PR(22)052022
During the EU DEMO Pre-Concept Design Phase, the remote maintenance team developed maintenance strategies and systems to meet the evolving plant maintenance requirements. These were constrained by the proposed tokamak architecture and the challenging environments but considered a range of port layouts and handling system designs. The design‑d…
-
UKAEA-CCFE-PR(22)322022
Vanadium base alloys represent potentially promising candidate structural materials for use in nuclear fusion reactors due to vanadium’s low activity, high thermal strength, and good swelling resistance. In this work, the mechanical properties of the current frontrunner vanadium base alloy, V-4Cr-4Ti, have been interrogated using in-situ high ene…
-
UKAEA-CCFE-PR(22)132022
A local flux expansion method has been proposed for estimating the strike point position for the advanced divertor configuration on MAST Upgrade tokamak. The paper discusses the application and assesses the performance of the technique on a long-legged divertor plasma configuration on an operating device – the DIII-D tokamak. A comparison of …
-
UKAEA-CCFE-PR(22)042022
The small punch test (SPT) has been widely used to evaluate the mechanical properties of materials for the nuclear industry due to its advantage of requiring minimal sample volumes. In this paper, the correlation between SPT and uniaxial tensile testing (UTT) is investigated for three materials used in the plasma-facing components of fusion reactor…
Showing 1 - 10 of 61 UKAEA Paper Results