-
UKAEA-CCFE-PR(19)042018
Avoiding impurity accumulation is a requirement for steady-state stellarator operation. The accumulation of impurities can be heavily affected by variations in their density on the flux-surface. Using recently derived semi-analytic expressions for the transport of a collisional impurity species with high-Z and flux-surface density-variation in t…
-
UKAEA-CCFE-PR(18)552018
A long-term high-temperature testing stress rig has been designed and fabricated for performing in situ neutron diffraction tests at the ENGIN-X beamline, ISIS facility in the UK. It is capable of subjecting metals to high temperatures up to 800°C and uniaxial loading under different boundary conditions including constant load, constant s…
-
UKAEA-CCFE-PR(18)442018
High-Z impurities in magnetic confinement devices are prone to develop density variations on the fluux-surface, which can significantly affect their transport. In this paper, we generalize earlier analytic stellarator calculations of the neoclassical radial impurity flux in the mixed-collisionality regime (collisional impurity and low-collisionalit…
-
UKAEA-CCFE-PR(18)92018
Elastic follow-up is a mechanical boundary condition lying between constant load and constant strain control. It exists in many engineering components operating at high temperature and can result in dramatically different creep stress relaxation and strain accumulation rates in a localized region of a component. We have performed creep tests under …
-
CCFE-PR(17)672017
The tritium required for ITER will be supplied from the CANDU production in Ontario, but while Ontario may be able to supply 8 kg for a DEMO fusion reactor in the mid-2050s, it will not be able to provide 10 kg at any realistic starting time. The tritium required to start DEMO is uncertain within a wide margin; stocks would likely have to be shared…
-
CCFE-PR(17)132017
Future devices like JT-60SA, ITER and DEMO require quantitative predictions of pedestal density and temperature levels, as well as inter-ELM and ELM divertor heat fluxes, in order to improve global confinement capabilities while preventing divertor erosion/melting in the planning of future experiments. Such predictions can be obtained from dedicate…
-
CCFE-PR(17)522017
The accumulation of impurities in the core of magnetically confined plasmas, resulting from standard collisional transport mechanisms, is a known threat to their performance as fusion energy sources. Whilst the axisymmetric tokamak systems have been shown to benefit from the effect of temperature screening, that is an outward flux of impurities dri…
-
2016
In tungsten plasma-facing fusion reactor components, Ta is the third most abundant element formed by transmutation (after Re and Os), yet little is known about the behaviour of W-Ta alloys under irradiation and any effects Ta might have on Re clustering in W-Re-Ta alloys. In this study, W-4.5 at.%Ta, W-2 at.% Re-1 at.%Ta andW-2 at.%Re alloys were e…
-
CCFE-PR(15)052015
The aim of the Exhaust Detritiation System (EDS) of the JET Active Gas Handling System (AGHS) is to convert all Q-based species (Q2, Q-hydrocarbons) into Q2O (Q being indifferently H, D or T) which is then trapped on molecular sieve beds (MSB). Regenerating the saturated MSBs leads to the production of tritiated water which is stored in Briggs drum…
-
2015
This study examines clustering and hardening in W–2 at.% Re and W–1 at.% Re–1 at.% Os alloys induced by 2 MeV W + ion irradiation at 573 and 773 K. Such clusters are known precursors to the formation of embrittling precipitates, a potentially life-limiting phenomenon in the oper- ation of fusion reactor components. Increases in hardness were …
Showing 21 - 30 of 37 UKAEA Paper Results