-
UKAEA-CCFE-PR(23)1802023
-
UKAEA-CCFE-PR(23)1242023
Beryllium samples from the JET ITER-like wall limiter tiles with either co-deposits or surface cracks caused by melt damage, were immersed into boiling water for 4 h 15 min to simulate and assess the impact of coolant water ingress into a tokamak on the state of Be components. Microscopy of the water-treated surfaces and the residue in the water re…
-
UKAEA-CCFE-PR(23)1882022
In 2019, the JET-ILW was equipped with a Shattered Pellet Injector (SPI) system with a wide capability to allow studies on the efficacy of shattered pellets in reducing the electro-magnetic and the thermal loads during disruptions and the avoidance/suppression of the formation of runaway electrons. The fully commissioned system became operationa…
-
UKAEA-CCFE-PR(23)1062022
Molybdenum is used as plasma-facing material in tokamaks and as material for plasma optical diagnostic mirrors. Harsh conditions of neutron irradiation, exposure to hydrogen isotopes and helium, and high temperature result in degradation of molybdenum surface and ultimately limit the lifetime of fusion power plant. In the current paper, we inves…
-
UKAEA-CCFE-PR(22)602022
This work was carried out to identify sources of errors, uncertainties and discrepancies in studies of fuel retention in wall components from the JET tokamak using methods based on thermal desorption. The parallel aim was to establish good practices in measurements and to unify procedures in data handling. A comprehensive program designed for deute…
-
UKAEA-CCFE-CP(23)132021
JET has investigated one the key issues for the baseline scenario in ITER, the integration of a radiative divertor for heat load control with the use of neon and nitrogen as seed impurity. A characterization of the choice of the impurity seed on plasma confinement, neutrons, pedestal MHD stability, pedestal instabilities, core transport is given…
-
UKAEA-CCFE-CP(21)122021
This contribution outlines a strategy for assessing tritium (T) inventory in plasma facing components (PFC) during JET T operations. It is based on retention as a fraction of fuel injected in-vessel, currently reported as 0.24% for 2011-2012 operating period, in conjunction with the planned T pulse schedule providing fueling of 4 g T injected per d…
-
UKAEA-CCFE-CP(20)1122020
Understanding of fuel retention and release processes from plasma facing components (PFCs) of ITER like wall materials is important from fundamental and technological aspects [1]. Detailed information about fuel retention and release characteristics in plasma facing components from JET will allow…
-
UKAEA-CCFE-PR(20)722020
Self-ion bombardment of pure tungsten with ion energies of 2 MeV is used to mimic the defects created by neutrons in a fusion reactor. Electron microscopy is used to characterize the microstructure of samples. Thermal Desorption Spectrometry (TDS) is performed on deuterium implanted samples in order to estimate deuterium inventory as function of…
-
2019
Data on erosion and melting of beryllium upper limiter tiles, so-called dump plates (DP), are presented for all three campaigns in the JET tokamak with the ITER-like wall. High-resolution images of the upper wall of JET show clear signs of flash melting on the ridge of the roof-shaped tiles. The melt layers move in the poloidal direction from the i…
Showing 1 - 10 of 13 UKAEA Paper Results