-
2014
A key feature of disruptions during Vertical Displacement Events (VDEs), discovered in JET in 1996, is the toroidal variation in the measured plasma current Ip, i.e. the plasma current asymmetries, lasting for almost the entire current quench. The unique magnetic diagnostics at JET (full set of poloidal coils and saddle loops recorded either from t…
-
2014
In 2011-2012, an experimental campaign with a significant yield of fusion neutrons was carried out on the JET tokamak. During this campaign the facility was equipped with two diamond detectors based on natural and artificial CVD diamond. These detectors were designed and manufactured in State Research Center of Russian Federation TRINITI. The detec…
-
2014
After the first high power D-T experiment in JET in 1997 (DTE1), when JET was equipped with Carbon PFC’s, a proposed second high power (up to ~40MW) D-T campaign (DTE2) in the current Be/W vessel will address essential operational, technical, diagnostics and scientific issues in support of ITER. These experiments are proposed to minimize the risk…
-
2014
The Joint European Toras (JET, Culham, UK) is the largest tokamak in the world. It is devoted to nuclear fusion experiments of magnetic confined Deuterium (D) or Deuterium-Tritium (DT) plasmas. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under…
-
2014
An overview of the recent results of Lower Hybrid (LH) experiments at JET with the ITER-like wall (ILW) is presented. Topics relevant to LH wave coupling are addressed as well as issues related to ILW and LH system protections. LH wave coupling was studied in conditions determined by ILW recycling and operational constraints. It was concluded that …
-
2014
When using Ion Cyclotron Range of Frequency (ICRF) heating, enhanced power deposition on Plasma-Facing Components (PFCs) close to the antennas can occur. Experiments have recently been carried out on JET with the new ITER-Like-Wall (ILW) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography me…
-
2014
After the change over from the C-wall to the ITER-like Be/W wall (ILW) in JET, the radiation losses during ICRF heating have increased and are now substantially larger than those observed with NBI at the same power levels, in spite of the similar global plasma energies reached with the two heating systems. A comparison of the NBI and ICRF performan…
-
2014
During the initial operation of the JET ITER-like wall, particular attention was given to the characterization of the Ion Cyclotron Resonance Frequency (ICRF) heating in this new metallic environment. In this contribution we compare L-modes plasmas heated by ICRF or by Neutral Beam Injection (NBI). ICRF heating as expected led to a much higher cent…
-
2014
Magnetically confined plasmas, such as those produced in the tokamak JET, contain measurable amounts of impurity ions produced during plasma-wall interactions (PWI) from the plasma-facing components and recessed wall areas. The impurities, including high- and mid-Z elements such as tungsten (W) from first wall tiles and nickel (Ni) from Inconel str…
-
2014
The most recent JET campaign has focused on characterizing operation with the "ITER-like" wall. One of the questions that needed to be answered is whether the auxiliary heating methods do not lead to unacceptably high levels of impurity influx, preventing fusion-relevant operation. In view of its high single pass absorption, hydrogen minority funda…
Showing 181 - 190 of 223 UKAEA Paper Results