-
UKAEA-CCFE-CP(19)042018
Waste-production predictions for the future demonstration fusion power plant (DEMO) are necessary to produce an accurate picture of the likely environmental and economic costs of radioactive waste disposal at end-of-life (EOL). Even during the conceptual stage of DEMO design it is important to perform waste assessment so as to avoid potential surpr…
-
UKAEA-CCFE-PR(18)792018
This paper reports new activities conducted as part of the JET technology programme under the WP-JET3 ACT sub-project collaboration. The aim of the sub-project is to take advantage of the significant 14 MeV neutron fluence expected during JET operations to irradiate samples of materials that will used in the manufacturing of main ITER tokamak compo…
-
UKAEA-CCFE-PR(18)242018
Computational models created for neutronics assessment through solid geometry conversion are often specific to the analysis being performed. The use of unstructured mesh geometry has the potential to reduce the build time of MCNP models, reduce inaccuracies introduced through flux averaging over different components and material mixing, and make us…
-
UKAEA-CCFE-PR(18)162018
The processing code SPECTRA-PKA produces energy spectra of primary atomic recoil events (or primary knock-on atoms, PKAs) for any material composition exposed to an irradiation spectrum. Such evaluations are vital inputs for simulations aimed at understanding the evolution of damage in irradiated material, which is generated in cascade displacement…
-
UKAEA-CCFE-PR(18)12018
This paper details progress in experimental characterisation work at JET for the long-term irradiation station conducted as part of a project to perform activation experiments using ITER materials. The aim is to take advantage of the significant 14 MeV neutron yield expected during JET operations to irradiate samples of materials that will be used …
-
CCFE-PR(17)082017
Inventory calculations have a key role to play in designing future fusion power plants because, for a given irradiation field and material, they can predict the time evolution in chemical composition, activation, decay heat, gamma-dose, gas production, and even damage (dpa) dose. For conceptual designs of the European DEMO fusion reactor such calcu…
-
CCFE-PR(16)152016
Accurately quantifying the transmutation rate of tungsten (W) under neutron irradiation is a necessary requirement in the assessment of its performance as an armour material in a fusion power plant. The usual approach of calculating average responses, assuming large, homogenised material volumes, is insu?cient to capture the full complexity of the …
-
CCFE-PR(16)832016
The neutrons generated in fusion plasmas interact with materials via nuclear reactions. The resulting transmutations and atomic displacements have life-limiting consequences for fusion reactor components. A detailed understanding of the production, evolution and material consequences of the damage created by cascades of atomic displacements require…
-
CCFE-PR(16)582016
The inventory code Fispact-II, when connected to the nuclear data libraries TENDL-2015, ENDF/B-VII.1, JENDL-4.0u or JEFF-3.2, forms a simulation platform for modelling activation, transmutation processes and simulating radiation damage sources terms. The system has extended nuclear data forms, uncertainty quantification and propagation models which…
-
CCFE-PR(16)532016
Fispact-II is a code system and library database for modelling activation-transmutation processes depletion-burn-up, time dependent inventory and radiation damage source terms caused by nuclear reactions and decays. The Fispact-II code, written in object-style Fortran, follows the evolution of material irradiated by neutrons, alphas, gammas, proto…
Showing 61 - 70 of 92 UKAEA Paper Results