-
UKAEA-CCFE-PR(23)1912023
ITER is of key importance in the European fusion roadmap as it aims to prove the scientific and technological feasibility of fusion as a future energy source. The EUROfusion consortium of labs is contributing to the preparation of ITER scientific exploitation and operation and aspires to exploit ITER outcomes in view of DEMO. The paper provides …
-
UKAEA-CCFE-CP(23)342021
The characteristically intense neutron source generated in deuterium-tritium (DT) fusion power presents notable challenges for materials comprising the structure of the device which are exposed to them. These include radiation damage effects leading to degradation of structural properties with impact on maintenance and replacement frequency, but…
-
UKAEA-CCFE-CP(23)122020
The planned high-profile experiments during 2020 at the Joint European Torus (JET), notably including a deuterium-tritium (DT) experimental phase, are expected to produce large neutron yields, in the region of 1021 neutrons. The scientific objectives are linked with a technology programme, WPJET3, to deliver the maximum scientific and…
-
UKAEA-CCFE-CP(20)1082020
In future fusion power plants, such as DEMO, D-T neutron emission is predicted to exceed 1×1021 neutrons/second. Accurately monitoring neutron energies and intensities will be the primary method for estimating fusion power, and calculating key parameters, including the tritium breeding ratio and nuclear heating. The Novel Neutron Det…
-
UKAEA-CCFE-PR(18)792018
This paper reports new activities conducted as part of the JET technology programme under the WP-JET3 ACT sub-project collaboration. The aim of the sub-project is to take advantage of the significant 14 MeV neutron fluence expected during JET operations to irradiate samples of materials that will used in the manufacturing of main ITER tokamak compo…
-
UKAEA-CCFE-PR(18)12018
This paper details progress in experimental characterisation work at JET for the long-term irradiation station conducted as part of a project to perform activation experiments using ITER materials. The aim is to take advantage of the significant 14 MeV neutron yield expected during JET operations to irradiate samples of materials that will be used …
Showing 1 - 6 of 6 UKAEA Paper Results
Page 1 of 1