-
UKAEA-CCFE-CP(23)502022
Global research programmes seeking to achieve a commercially viable model of a fusion power plant are being accelerated at an unprecedented rate. One critical element to the design and licensing is an accurate understanding of the radiation environment throughout the plant lifetime and subsequent decommissioning phase. The radiation field which res…
-
UKAEA-CCFE-PR(21)552021
Released in 2009, the Serpent Monte Carlo code has established itself as a highly efficient and powerful simulation code for nuclear systems analysis. Originally developed for reactor physics applications, the scope of the code now extends to coupled multi-physics simulations and radiation transport. The latter has allowed adoption of the code by t…
-
UKAEA-CCFE-CP(21)092020
Understanding the effects of neutron irradiation of materials is one of the outstanding issues in the development of fusion technologies. The impact of this work derives from the opportunity, for the first time in a tokamak operating with a D-T plasma, to deliver experimental results which directly link to the nuclear characteristics of real sample…
-
UKAEA-CCFE-PR(21)172020
The accurate modelling of the activation of flowing material in a fusion reactor, such as coolant water or lithium-lead breeder, has important safety and shielding implications. Two codes developed at UKAEA which account for neutron flux variation have been investigated for the potential for incorporating computational fluid dynamics (CFD) and c…
-
UKAEA-CCFE-PR(20)1152020
Spectrum unfolding is a key tool used together with diagnostics in the determination of nuclear fields that are associated with a range of nuclear technologies spanning fusion, fission, nuclear medicine and accelerator domains. The underlying process requires a mathematical method for solving the Fredholm integral equation of the first kind. This p…
-
UKAEA-CCFE-CP(20)872019
Analyses of radiation fields resulting from a deuterium-tritium (DT) plasma in fusion devices is a critical input to the design and validation of many aspects of the reactor design, such as shielding, material lifetime and remote maintenance requirements/scheduling. Neutronics studies are performed using radiation transport codes such as MCNP, TRIP…
-
UKAEA-CCFE-PR(18)792018
This paper reports new activities conducted as part of the JET technology programme under the WP-JET3 ACT sub-project collaboration. The aim of the sub-project is to take advantage of the significant 14 MeV neutron fluence expected during JET operations to irradiate samples of materials that will used in the manufacturing of main ITER tokamak compo…
Showing 1 - 7 of 7 UKAEA Paper Results
Page 1 of 1