-
UKAEA-CCFE-PR(25)2932023
This paper reports on the refinement (building on Ref. [1]) and application of simple formulas for electron heat transport from electron temperature gradient (ETG) driven turbulence in the pedestal. The formulas are improved by (1) improving the parameterization for certain key parameters and (2) carefully accounting for the impact of geometry a…
-
UKAEA-CCFE-PR(25)2912023
We compare the structure of electron temperature gradient (ETG) driven turbulence in the pedestals of two JET ITER-like-wall (ILW) type I ELMy H-mode discharges operating with similar experimental inputs but at different levels of gas fuelling. By artificially removing the toroidal drifts from our GENE gyrokinetic simulations and subsequently an…
-
UKAEA-CCFE-PR(23)1532023
The results of a recent gyrokinetic analysis of turbulent transport driven by the electron temperature gradient (ETG) in the MAST pedestal are presented. During the inter-ELM period, the buildup rate of the electron density gradients is faster than that of the electron temperature gradients, possibly indicating the presence of an active electron th…
-
UKAEA-STEP-CP(23)082022
Microinstabilities often result in turbulence that influences energy confinement in tokamak discharges. One such microinstability, of particular importance to the design of next-generation spherical tokamaks (STs) such as STEP [1], is the microtearing mode (MTM), a tearing-parity mode centred on high-order rational surfaces. MTMs are short-wavel…
-
UKAEA-CCFE-PR(22)032022
This paper reports on the development of reduced models for electron temperature gradient (ETG) driven transport in the pedestal. Model development is enabled by a set of 61 nonlinear gyrokinetic simulations with input parameters taken from the pedestals in a broad range of experimental scenarios. The simulation data has been consolidated in a new …
-
UKAEA-CCFE-PR(23)1022021
We present the results of GENE gyrokinetic calculations based on a series of JET-ILW type I ELMy H-mode discharges operating with similar experimental inputsbut at different levels of power and gas fuelling. We show that turbulence due to slab electron-temperature-gradient modes (sETGs) produces a significant amount of heat flux in four JET-ILW …
-
UKAEA-CCFE-CP(22)032021
-
UKAEA-CCFE-PR(20)212020
Local linear gyrokinetic simulations show that electron temperature gradient (ETG) instabilities are the fastest growing modes for kyρi >~ 0.1 in the steep gradient region for a JET pedestal discharge (92174) where the electron temperature gradient is steeper than the ion temperature gradient. Here, ky is the wa…
-
UKAEA-CCFE-CP(20)982018
Showing 1 - 9 of 9 UKAEA Paper Results
Page 1 of 1