-
UKAEA-CCFE-PR(24)032024
To design a safe termination scenario for a burning ITER plasma is a challenge that requires extensive core plasma and divertor modelling. The presented work consists of coupled core/edge/SOL/divertor simulations, performed with the JINTRAC code, studying the Q=10 flat-top phase and exit phase of the ITER 15MA/5.3T DT scenario. The modelling uti…
-
UKAEA-CCFE-PR(22)572022
The LOCUST GPU code has been applied to study the fast-ion transport caused by resonant magnetic perturbations in the high-performance Q = 10 ITER baseline scenario. The computational speed of the code is used calculate the impact of the ITER ELM-control-coil system on neutral beam heating efficiency, as well as producing detailed predictions o…
-
UKAEA-CCFE-CP(23)282021
An important part of the ITER Research Plan [1] is the Pre-Fusion Power Operation (PFPO) phase, which includes demonstration of H-mode plasma operation and the commissioning of ELM control systems. However, since hydrogen or helium are the main ion species in PFPO plasmas, the L–H power threshold PL–H is expected to be cons…
-
UKAEA-CCFE-PR(21)772021
The optimum conditions for access to and sustainment of H-mode plasmas and their expected plasma parameters in the Pre-Fusion Power Operation 1 (PFPO-1) phase of the ITER Research Plan, where the additional plasma heating will be provided by 20 MW of Electron Cyclotron Heating (ECH), are assessed in order to identify key open R&D issues. The as…
-
UKAEA-CCFE-PR(21)772021
The optimum conditions for access and sustainment of H-mode plasmas and their expected plasma parameters in the Pre-Fusion Operation 1 (PFPO-1) phase of the ITER Research Plan, where the additional plasma heating will be provided by 20 MW of Electron Cyclotron Heating (ECH), are assessed. The assessment is performed on the basis of empirical and…
-
UKAEA-CCFE-CP(19)272019
The ability to describe the essential physics and technology elements needed to robustly simulate the operation of ITER is critical to being able to model the plasma scenarios that will run in ITER. In this paper, the Integrated Modelling & Analysis Suite (IMAS) is used to simulate the 15 MA DT baseline scenario operation, including a descripti…
-
UKAEA-CCFE-PR(18)702018
We report results of the benchmarking of core particle transport simulations by the codes widely used in the interpretative transport analyses and predictive modelling of tokamak plasmas. Our analysis includes formulation of transport equations, difference between electron and ion particle solvers, comparison of simulations of particle sinks and so…
Showing 1 - 7 of 7 UKAEA Paper Results
Page 1 of 1