-
UKAEA-CCFE-PR(24)032024
To design a safe termination scenario for a burning ITER plasma is a challenge that requires extensive core plasma and divertor modelling. The presented work consists of coupled core/edge/SOL/divertor simulations, performed with the JINTRAC code, studying the Q=10 flat-top phase and exit phase of the ITER 15MA/5.3T DT scenario. The modelling uti…
-
UKAEA-CCFE-PR(23)1802023
-
UKAEA-CCFE-PR(22)572022
The LOCUST GPU code has been applied to study the fast-ion transport caused by resonant magnetic perturbations in the high-performance Q = 10 ITER baseline scenario. The computational speed of the code is used calculate the impact of the ITER ELM-control-coil system on neutral beam heating efficiency, as well as producing detailed predictions o…
-
UKAEA-CCFE-PR(22)332022
Screening of high-Z (W) impurities from the confined plasma by the temperature gradient at the hot edge pedestal of fusion-grade H-mode plasmas has been demonstrated for the first time in the JET-ILW tokamak. Through careful optimisation of the hybrid-scenario, deuterium plasmas with sufficient heating power (≳ 32MW), high enough ion temperature …
-
UKAEA-CCFE-CP(23)282021
An important part of the ITER Research Plan [1] is the Pre-Fusion Power Operation (PFPO) phase, which includes demonstration of H-mode plasma operation and the commissioning of ELM control systems. However, since hydrogen or helium are the main ion species in PFPO plasmas, the L–H power threshold PL–H is expected to be cons…
-
UKAEA-CCFE-PR(21)772021
The optimum conditions for access to and sustainment of H-mode plasmas and their expected plasma parameters in the Pre-Fusion Power Operation 1 (PFPO-1) phase of the ITER Research Plan, where the additional plasma heating will be provided by 20 MW of Electron Cyclotron Heating (ECH), are assessed in order to identify key open R&D issues. The as…
-
UKAEA-CCFE-PR(21)772021
The optimum conditions for access and sustainment of H-mode plasmas and their expected plasma parameters in the Pre-Fusion Operation 1 (PFPO-1) phase of the ITER Research Plan, where the additional plasma heating will be provided by 20 MW of Electron Cyclotron Heating (ECH), are assessed. The assessment is performed on the basis of empirical and…
-
UKAEA-CCFE-PR(20)232019
To ensure optimal plasma performance at high Qfus for the baseline scenario foreseen for the International Tokamak Experimental Reactor (ITER), fuelling requirements, in particular for non-stationary phases, need to be assessed by means of integrated modelling due to different expected fuelling behaviour and additional challenges that need to be ad…
-
UKAEA-CCFE-CP(19)272019
The ability to describe the essential physics and technology elements needed to robustly simulate the operation of ITER is critical to being able to model the plasma scenarios that will run in ITER. In this paper, the Integrated Modelling & Analysis Suite (IMAS) is used to simulate the 15 MA DT baseline scenario operation, including a descripti…
-
UKAEA-CCFE-PR(19)232018
We have modelled self-consistently the most efficient ways to fuel ITER Hydrogen (H), Helium (He) and Deuterium-Tritium (DT) plasmas with gas and/or pellet injection with the integrated core and 2D SOL/divertor suite of codes JINTRAC. As far as we are aware, for ITER this is the first time modelling of the entire plasma has been carried out to f…
Showing 1 - 10 of 19 UKAEA Paper Results