-
UKAEA-CCFE-PR(24)032024
To design a safe termination scenario for a burning ITER plasma is a challenge that requires extensive core plasma and divertor modelling. The presented work consists of coupled core/edge/SOL/divertor simulations, performed with the JINTRAC code, studying the Q=10 flat-top phase and exit phase of the ITER 15MA/5.3T DT scenario. The modelling uti…
-
UKAEA-CCFE-PR(23)1912023
ITER is of key importance in the European fusion roadmap as it aims to prove the scientific and technological feasibility of fusion as a future energy source. The EUROfusion consortium of labs is contributing to the preparation of ITER scientific exploitation and operation and aspires to exploit ITER outcomes in view of DEMO. The paper provides …
-
UKAEA-CCFE-PR(23)1792023
-
UKAEA-CCFE-PR(23)1212023
In the paper we present an overview of interpretive modelling of a database of JET-ILW 2021 D-T discharges using the TRANSP code. Our main aim is to assess our capability of computationally reproducing the fusion performance of various D-T plasma scenarios using different external heating and D-T mixtures, and understand the performance driving mec…
-
UKAEA-CCFE-CP(24)062022
MAST-U is equipped with a Super-X divertor, which aims to reduce heat flux to the target and promote detachment. Measurements of plasma electron density and temperature in the Super-X chamber offer insight into the processes at work in this type of divertor. First data have been obtained from the MAST-U divertor Thomson scattering diagnostic design…
-
UKAEA-CCFE-PR(22)522022
Thomson scattered light is polarised in the same orientation as the incident laser beam at low electron temperatures. At high temperatures (>~4keV) part of the spectrum begins to become randomly polarised. First measurement of the depolarised Thomson scattering spectrum during were obtained from JET pulses 92038-92504. This paper builds upon …
-
UKAEA-CCFE-PR(22)332022
Screening of high-Z (W) impurities from the confined plasma by the temperature gradient at the hot edge pedestal of fusion-grade H-mode plasmas has been demonstrated for the first time in the JET-ILW tokamak. Through careful optimisation of the hybrid-scenario, deuterium plasmas with sufficient heating power (≳ 32MW), high enough ion temperature …
-
UKAEA-CCFE-PR(22)212022
This paper describes the development of electromagnetic plasma burn-through model. Full circuit equations describing the currents in solenoid, poloidal field coil, and toroidally conducting passive structure have been integrated into the differential equation system of the plasma energy and particle balances in DYON. This enables consistent calcula…
-
UKAEA-CCFE-CP(23)202021
Disruption prediction and avoidance is critical for ITER and reactor-scale tokamaks to maintain steady plasma operation and to avoid damage to device components. The present status and results from the disruption event characterization and forecasting (DECAF) research effort are shown. The DECAF paradigm is primarily physics-based and provides q…
-
UKAEA-CCFE-PR(21)352021
Sustained operation of high-performance, ITER-baseline scenario plasmas at the high levels of input power (~< 40MA) required to achieve ~ 15 MW of D-T fusion power in JET-ILW requires careful optimisation of the fuelling to avoid an unacceptable disruption rate due to excessive radiation, primarily from W impurities, which are sputter…
Showing 1 - 10 of 36 UKAEA Paper Results