-
UKAEA-CCFE-PR(25)3852025
The fusion research facility ITER is currently being assembled to demonstrate that fusion can be used for industrial energy production, while several other programmes across the world are also moving forward, such as EU-DEMO, CFETR, SPARK and STEP. The high engineering complexity of a tokamak makes it an extremely challenging device to optimise,…
-
UKAEA-CCFE-PR(22)172022
As the international tokamak ITER is being built, non-linear MHD simulations are playing an essential role in active research, understanding, and prediction of tokamak plasmas for the realisation of a fusion power plant. The development of MHD codes like JOREK is a key aspect of this research effort, and provides invaluable insight into the plasma …
-
UKAEA-CCFE-CP(23)142021
The high heat fluxes to the divertor during edge localised mode (ELM) instabilities have to be reduced for a sustainable future tokamak reactor. A solution to reduce the heat fluxes could be the Super-X divertor, this divertor configuration will be tested on MAST-U. ELM simulations for MAST-U Super-X tokamak plasmas have been obtained, using JOR…
-
UKAEA-CCFE-PR(20)822020
Non-linear MHD simulations play an essential role in active research and understanding of tokamak plasmas for fusion energy. The development of MHD codes like JOREK is a key aspect of this research effort. In this paper, we present a fully-working version of the full-MHD model in JOREK, a significant advancement from the reduced-MHD model used f…
-
UKAEA-CCFE-PR(20)1292018
Typically applied to non-linear simulations of MHD instabilities relevant to magnetically confined fusion, the JOREK code was originally developed with a 2D grid composed of isoparametric bi-cubic Bezier finite elements, that are aligned to the magnetic equilibrium of tokamak plasmas. To improve the applicability of these simulations, the grid-gene…
-
UKAEA-CCFE-CP(20)942018
Edge localised modes (ELMs) are magneto-hydrodynamic (MHD) instabilities that drive filamentary plasma eruptions in high confinement tokamak discharges [1]. Gaining an improved understanding of ELMs is important [2]; in future fusion reactors such as ITER, ELM heat fluxes will need to be limited to ensure durability of divertor materials [3]. A …
-
UKAEA-CCFE-PR(20)072019
ELM simulations for the MAST-U Super-X tokamak have been obtained, using the JOREK code. The JOREK visco-resistive MHD model has been used to obtain comparisons of divertor configurations. The simulations show a factor 10 decrease in the peak heat flux to the outer target of the Super-X in comparison to a conventional divertor configuration. A roll…
-
UKAEA-CCFE-CP(19)532019
During edge localised modes (ELMs) high heat fluxes are incident on divertor targets, which future fusion devices will not withstand [1]. A solution to reduce the heat fluxes could be the new Super-X divertor, which will be tested on the MAST-U tokamak. The divertor has an increased connection length, magnetic flux expansion and is designed to reta…
-
UKAEA-CCFE-PR(19)602019
Toroidal Alfven Eigenmode (TAE) excitation can be caused by fusion-born or Ion Cyclotron Resonance and neutral beam heating fast particles through wave-particle resonance. TAEs may affect fast particle confinement, reduce heating and current drive efficiency, cause damage to the first wall, and decrease overall plasma performance. Excitation of TA…
-
CCFE-PR(17)132017
Future devices like JT-60SA, ITER and DEMO require quantitative predictions of pedestal density and temperature levels, as well as inter-ELM and ELM divertor heat fluxes, in order to improve global confinement capabilities while preventing divertor erosion/melting in the planning of future experiments. Such predictions can be obtained from dedicate…
Showing 1 - 10 of 18 UKAEA Paper Results