-
UKAEA-CCFE-CP(23)402022
Shattered pellet injection (SPI), with research started in recent years, is the current concept for the ITER disruption mitigation system (DMS) to prevent disruption-related damage. Compared with impurity SPI, pure deuterium (D2) SPI could contribute to runaway electron (RE) avoidance in ITER via a strong dilution cooling before the thermal quen…
-
UKAEA-CCFE-PR(22)172022
As the international tokamak ITER is being built, non-linear MHD simulations are playing an essential role in active research, understanding, and prediction of tokamak plasmas for the realisation of a fusion power plant. The development of MHD codes like JOREK is a key aspect of this research effort, and provides invaluable insight into the plasma …
-
UKAEA-CCFE-PR(20)822020
Non-linear MHD simulations play an essential role in active research and understanding of tokamak plasmas for fusion energy. The development of MHD codes like JOREK is a key aspect of this research effort. In this paper, we present a fully-working version of the full-MHD model in JOREK, a significant advancement from the reduced-MHD model used f…
-
UKAEA-CCFE-PR(20)1292018
Typically applied to non-linear simulations of MHD instabilities relevant to magnetically confined fusion, the JOREK code was originally developed with a 2D grid composed of isoparametric bi-cubic Bezier finite elements, that are aligned to the magnetic equilibrium of tokamak plasmas. To improve the applicability of these simulations, the grid-gene…
-
UKAEA-CCFE-PR(20)072019
ELM simulations for the MAST-U Super-X tokamak have been obtained, using the JOREK code. The JOREK visco-resistive MHD model has been used to obtain comparisons of divertor configurations. The simulations show a factor 10 decrease in the peak heat flux to the outer target of the Super-X in comparison to a conventional divertor configuration. A roll…
-
UKAEA-CCFE-PR(19)602019
Toroidal Alfven Eigenmode (TAE) excitation can be caused by fusion-born or Ion Cyclotron Resonance and neutral beam heating fast particles through wave-particle resonance. TAEs may affect fast particle confinement, reduce heating and current drive efficiency, cause damage to the first wall, and decrease overall plasma performance. Excitation of TA…
-
UKAEA-CCFE-PR(18)692018
The impact of the three-dimensional (3D) tokamak geometry from external magnetic perturbations (MPs) on the local edge stability has been examined in high confinement mode (H-mode) plasmas with edge localised modes (ELMs) in ASDEX Upgrade. The 3D geometry has been probed using rigidly rotating MP fields. The measured distortions of the plasma bound…
-
CCFE-PR(17)132017
Future devices like JT-60SA, ITER and DEMO require quantitative predictions of pedestal density and temperature levels, as well as inter-ELM and ELM divertor heat fluxes, in order to improve global confinement capabilities while preventing divertor erosion/melting in the planning of future experiments. Such predictions can be obtained from dedicate…
-
CCFE-PR(16)182016
A subset of JET ITER-like wall (ILW) discharges, combining electron density and temperature as well as divertor heat flux measurements, has been collected for the validation of non-linear MHD simulations of Edge-Localised-Modes (ELMs). This permits a quantitative comparison of simulation results against experiments, which is required for the valida…
-
2013
The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to…
Showing 1 - 10 of 10 UKAEA Paper Results
Page 1 of 1