-
UKAEA-CCFE-PR(20)692020
Molybdenum is a potential material for future nuclear fusion experiments and power plants. It has good thermo-mechanical properties and can be readily fabricated, making it attractive as an alternative material to tungsten (the current leading candidate) for high neutron flux and high thermal load regions of fusion devices. Unfortunately, exposu…
-
UKAEA-CCFE-CP(25)202019
As part of the preparation for the second JET DT campaign (DTE2), a series of isotope control experiments in H/D mixtures [1] have shown that NBI fuelling species has only a weak effect on the core isotope composition, which remains determined by the edge H/D ratio and therefore by the injected gas.
-
UKAEA-CCFE-CP(23)092019
Recent studies of the neutron irradiation conditions predicted in the plasma-exposed first wall of a conceptual design of fusion DEMO power plant implementing the SPECTRA-PKA code have shown the importance of taking into consideration per-channel analysis of the high-energy threshold reactions for an accurate evaluation of their contribution to …
-
UKAEA-CCFE-CP(23)072019
The public perception of fusion power is that it will provide a clean source of abundant nuclear energy. This is not wholly accurate. Currently planned fusion reactors will use the deuterium-tritium (DT) reaction for power generation. This reaction produces 14 MeV neutrons which, as they cannot be magnetically confined, impinge upon the reactor str…
-
UKAEA-CCFE-PR(19)792019
The exhaust (loss) power components due to ELMs, radiation and heat transport across the edge transport barrier (ETB) between ELMs are quantifed for H-mode plasmas in JET-C and JET-ILW to provide data for comparison with simulations of pedestal heat transport. In low-current, JET-ILW pulses with a low rate of gas fuelling, the pedestal heat tran…
-
UKAEA-CCFE-PR(20)672019
Disruption prediction and avoidance is a critical need for next-step tokamaks such as ITER. The Disruption Event Characterization and Forecasting Code (DECAF) is used to fully automate analysis of tokamak data to determine chains of events that lead to disruptions and to forecast their evolution allowing sufficient time for mitigation or full av…
-
UKAEA-CCFE-PR(20)662019
Similarity experiments are conceived to study on existing tokamak facilities, characteristics of scenarios found on other devices or planned for new machines. The possibility of doing similarity experiments is linked to the physics processes studied and it gives in any case partial views which can be found in integrated way only on the planned d…
-
UKAEA-CCFE-PR(20)192019
A study of mixed hydrogen-deuterium H-mode plasmas has been carried out in JET-ILW to strengthen the physics basis for extrapolations to JET D-T operation and to support the development of strategies for isotope ratio control in future experiments. Variations of input power, gas fuelling and isotopic mixture were performed in H-mode plasmas of the…
-
UKAEA-CCFE-PR(20)162019
This paper gives guidelines for assessing the structural integrity of plasma facing components (PFC)when irradiated to the levels expected in DEMO after two full power years. The paper is part 2 of a 3-part paper describing the EuroFusion DEMO Divertor group (WPDIV) Inelastic Analysis procedure (IAP), created to improve the assessment of PFCs, a…
-
UKAEA-CCFE-PR(20)122019
Developing a robust safety case is a key step in the development of a fusion power reactor for electricity generation. Plans for fusion power reactors are already underway and before nuclear facilities are licensed, they must demonstrate they satisfy several safety objectives involving keeping workers and the public safe and limiting any environ…
Showing 171 - 180 of 500 UKAEA Paper Results