-
UKAEA-CCFE-PR(23)1802023
-
UKAEA-CCFE-CP(23)302021
Many of the essential data analysis procedures for a tokamak experiment rely on the knowledge of the magnetic field structure obtained from MHD force balance. On JET, the code that is responsible for computing the magnetic equilibrium is called EFIT++. Interpretation of JET data has been challenging due to inconsistencies between diagnostic meas…
-
UKAEA-CCFE-CP(23)132021
JET has investigated one the key issues for the baseline scenario in ITER, the integration of a radiative divertor for heat load control with the use of neon and nitrogen as seed impurity. A characterization of the choice of the impurity seed on plasma confinement, neutrons, pedestal MHD stability, pedestal instabilities, core transport is given…
-
UKAEA-CCFE-PR(21)462021
The fusion performance of ELMy H-mode DT plasmas with q95 = 3 and \\beta_N = 1.8 (also referred to as medium-\\beta_N baseline scenario in the rest of this paper) are predicted with the JINTRAC suite of codes and the QuaLiKiZ transport model. The predictions are based on the analysis of DT plasmas from the first DT campaign
-
UKAEA-CCFE-PR(21)352021
Sustained operation of high-performance, ITER-baseline scenario plasmas at the high levels of input power (~< 40MA) required to achieve ~ 15 MW of D-T fusion power in JET-ILW requires careful optimisation of the fuelling to avoid an unacceptable disruption rate due to excessive radiation, primarily from W impurities, which are sputter…
-
2020
A robust impurity detection and tracking code, able to generate large sets of dust tracks from tokamak camera footage, is presented. This machine learning–based code is tested with cameras from the Joint European Torus, Doublet-III-D, and Magnum-PSI and is able to generate dust tracks with a 65–100% classification accuracy. Moreover, the number…
-
UKAEA-CCFE-CP(20)742020
Post mortem analysis shows that mid and high atomic number metallic impurities are present in deposits on JET plasma facing components with the highest amount of Ni and W, and therefore the largest sink, being found at the top of the inner divertor. Sources are defined as “continuous” or “specific”, in that “continuous” sources…
-
UKAEA-CCFE-PR(19)792019
The exhaust (loss) power components due to ELMs, radiation and heat transport across the edge transport barrier (ETB) between ELMs are quantifed for H-mode plasmas in JET-C and JET-ILW to provide data for comparison with simulations of pedestal heat transport. In low-current, JET-ILW pulses with a low rate of gas fuelling, the pedestal heat tran…
-
UKAEA-CCFE-CP(19)352019
In high-performance, ITER baseline-scenario pulses (3MA/2.7T) in JET-ILW with high levels (~ 32 MW) of heating power, typically ~ 20-40% of the input power is radiated, predominantly by W impurities, which are sputtered from the divertor targets and reach the confined plasma. Sustained ELMy H-mode operation at such high heating power in JET-ILW req…
-
UKAEA-CCFE-PR(19)752019
The evolution of the JET high performance hybrid scenario, including central accumulation of the tungsten (W) impurity, is reproduced with predictive multi-channel integrated modelling over multiple confinement times using first-principle based models. 8 transport channels are modelled predictively, with self-consistent sources, radiation and magne…
Showing 1 - 10 of 17 UKAEA Paper Results