-
CCFE-PR(17)022017
Calculations of the heat flux carried by plasma to the wall of a magnetic fusion machine often assume that power flows only along the field lines, but this cannot be true in general. Instead, we treat the plasma as an anisotropic non-linear thermally conducting medium. The model is physically relevant if parallel and cross-field transport are drive…
-
CCFE-PR(17)082017
Inventory calculations have a key role to play in designing future fusion power plants because, for a given irradiation field and material, they can predict the time evolution in chemical composition, activation, decay heat, gamma-dose, gas production, and even damage (dpa) dose. For conceptual designs of the European DEMO fusion reactor such calcu…
-
CCFE-PR(17)092017
Although the ultimate goal of most current fusion research is to build an economically attractive power plant, the present status of physics and technology does not provide the performance necessary to achieve this goal. Therefore, in order to model how such plants may operate and what their output might be, extrapolations must be made from existin…
-
CCFE-PR(17)482017
The ITER tokamak needs to sustain a plasma in a regime of high energy confinement (H-mode) to exceed fusion breakeven where power output exceeds input. H-mode plasmas are typically unstable to edge localised modes (ELMs), in which plasma escapes and strikes the plasma facing components. Scaled up to ITER, the energy released by ELMs can cause criti…
-
CCFE-PR(17)462017
Tokamak plasma current start-up assisted by Electron Bernstein waves (EBW) has been demonstrated successfully in a number of experiments. The dynamic start-up phase involves a change in field topology, as the initially open magnetic field lines form closed flux surfaces (CFS) under the initiation of a plasma current. This change in field topology w…
-
2017
The heating neutral beam injectors (HNBs) of ITER are designed to deliver 16.7MWof 1 MeVD0 or 0.87 MeVH0 to the ITER plasma for up to 3600 s. They will be the most powerful neutral beam (NB) injectors ever, delivering higher energy NBs to the plasma in a tokamak for longer than any previous systems have done. The design of the HNBs is based on the …
-
CCFE-PR(16)782016
The dynamics and stability of divertor detachment in N2 seeded, type-I, ELMy H-mode plasmas with dominant NBI heating in the JET-ILW device is studied by means of an integrated analysis of diagnostic data from several systems, classifying data relative to the ELM times. It is thereby possible to study the response of the detachment evolution to the…
-
CCFE-PR(16)012016
Tritium production is of critical importance to prospective DT fusion power plants. Lithium ceramic and beryllium based solid-type breeder blankets are an option for supplying the tritium required to sustain the DT plasma. This research investigates the time-varying tritium production in solid breeder blankets with different compositions. The breed…
-
CCFE-PR(16)152016
Accurately quantifying the transmutation rate of tungsten (W) under neutron irradiation is a necessary requirement in the assessment of its performance as an armour material in a fusion power plant. The usual approach of calculating average responses, assuming large, homogenised material volumes, is insu?cient to capture the full complexity of the …
-
CCFE-PR(16)322016
A Fusion Nuclear Science Facility (FNSF) could play an important role in the development of fusion energy by providing the nuclear environment needed to develop fusion materials and components. The spherical torus/tokamak (ST) is a leading candidate for an FNSF due to its potentially high neutron wall loading and modular configuration. A key consid…
Showing 261 - 270 of 500 UKAEA Paper Results