A. Valentine T. Berry S. Bradnam H. Chohan T. Eade C. Grove J. Hagues K. Hearn J. Hodson K. Lennon J. Naish J. Neilson C. Nobs L. Packer A. Turner T. Turner L. Woodall R. Worrall
Global research programmes seeking to achieve a commercially viable model of a fusion power plant are being accelerated at an unprecedented rate. One critical element to the design and licensing is an accurate understanding of the radiation environment throughout the plant lifetime and subsequent decommissioning phase. The radiation field which res…
PreprintL. W. Packer P. Batistoni N. Bekris S. C. Bradnam H. Chohan M. Fabbri Z. Ghani M. R. Gilbert R. Kierepko E. Laszynska D. Leichtle I. Lengarf S. Loreti J. W. Mietelski C. R. Nobs M. Pillon M. I. Savva I. E.Stamatelatos T. Vasilopoulou A. Wojcik-Gargula A. Zoharf JET Contributors
The characteristically intense neutron source generated in deuterium-tritium (DT) fusion power presents notable challenges for materials comprising the structure of the device which are exposed to them. These include radiation damage effects leading to degradation of structural properties with impact on maintenance and replacement frequency, but…
PreprintD.J.M. King A.J. Knowles D. Bowden M.R. Wenman S. Capp M. Gorley J. Shimwell L. Packer M.R. Gilbert A. Harte
This Review considers current Zr alloys and opportunities for advanced zirconium alloys to meet the demands of a structural material in fusion reactors. Zr based materials in the breeder blanket offer the potential to increase the tritium breeding ratio above that of Fe, Si and V based materials. Current commercial Zr alloys might be considered …
Preprint PublishedL. W. Packer P. Batistoni S. C. Bradnam S. Conroy M. Fabbri Z. Ghani M. R. Gilbert S. Jednorog E. Laszynska D. Leichtle I. Lengar M. Majerle J. W. Mietelski C. R.Nobs O. Ogorodnikova M. Pillon M. I. Savva I. E. Stamatelatos T. Vasilopoulou R. Villari A. Wojcik-Gargula R. Worrall JET Contributors
Understanding the effects of neutron irradiation of materials is one of the outstanding issues in the development of fusion technologies. The impact of this work derives from the opportunity, for the first time in a tokamak operating with a D-T plasma, to deliver experimental results which directly link to the nuclear characteristics of real sample…
Preprint PublishedA.Valentine N.Fonnesu B.Bienkowska E.Laszynska D.Flammini R.Villari G.Mariano T.Eade T.Berry L.Packer
As a demonstration fusion power plant, EU DEMO has to prove the maturity of fusion technology and its viability for electricity production. The central requirements for DEMO rest on its capability to generate significant net electric power to the grid (300MW to 500 MW) safely and consistently. Plant availability and lifetime will approach that of a…
Preprint PublishedL. W. Packer P. Batistoni B. Colling K. Drozdowicz M. Fabbri Z. Ghani M. R Gilbert S. Jednorog E. Laszynska D. Leichtlef J.W.Mietelski C.R. Nobs M. Pillon I.E. Stamatelatos T. Vasilopoulou R. Villari A. Wójcik-Gargula JET Contributors
The planned high-profile experiments during 2020 at the Joint European Torus (JET), notably including a deuterium-tritium (DT) experimental phase, are expected to produce large neutron yields, in the region of 1021 neutrons. The scientific objectives are linked with a technology programme, WPJET3, to deliver the maximum scientific and…
PreprintT. A. Berry C. R. Nobs A. Dubas R. Worrall T. Eade J. Naish L. W. Packer
The accurate modelling of the activation of flowing material in a fusion reactor, such as coolant water or lithium-lead breeder, has important safety and shielding implications. Two codes developed at UKAEA which account for neutron flux variation have been investigated for the potential for incorporating computational fluid dynamics (CFD) and c…
Preprint PublishedChantal Nobs Jonathon Naish Lee Packer Mario Pillon Maurizio Angelone Stefano Loreti Paolo Del Prete Jesus Izquierdo Raul Pampin Luca Zanibellato
During ITER operations the water coolant flowing through components such as the first wall, blanket modules, divertor cassettes and vacuum vessel will become activated by high energy neutrons. Two key neutron-induced reactions will occur with oxygen in the water producing the radioactive isotopes, N-16 and N-17, which have relatively short half-liv…
Preprint PublishedC.R. Nobs L. W. Packer P. Batistoni B. Colling Z. Ghani M. Gilbert S. Loreti K. Mergia S. Mesoloras I. Michelakaki M. Pillon M. I. Savva I. E. Stamatelatos K. Triantou T. Vasilopoulou
In future fusion power plants, such as DEMO, D-T neutron emission is predicted to exceed 1×1021 neutrons/second. Accurately monitoring neutron energies and intensities will be the primary method for estimating fusion power, and calculating key parameters, including the tritium breeding ratio and nuclear heating. The Novel Neutron Det…
Preprint PublishedL. W. Packer S. Allan S. B. Bradnam M. R. Gilbert T. Stainer
The measurement of the fusion neutron yield provides a direct relationship with fusion power and is hence an important measure of experimental performance. In pulsed neutron emission scenarios, such as those experienced in dense plasma focus devices, inertial confinement fusion and even in short-pulse tokamak experiments, considerations of the dyna…
Preprint Published