-
UKAEA-CCFE-PR(23)1792023
-
UKAEA-CCFE-PR(23)1702023
Neutral Beam Injection (NBI) is a flexible auxiliary heating method for tokamak plasmas, capable of being efficiently coupled to the various plasma configurations required in the Tritium and mixed DeuteriumTritium Experimental campaign (DTE2) on the JET device. High NBI power was required for high fusion yield and alpha particle studies and to …
-
UKAEA-CCFE-PR(23)1652023
This work studies the interaction between Radio Frequency (RF) waves used for Ion Cyclotron Resonance Heating (ICRH) and the fast D and T Neutral Beam Injected (NBI) ions in DT plasma. The focus is on the effect of this interaction, also referred to as synergistic effects, on the fusion performance in the recent JET DTE2 campaign. Experimental d…
-
UKAEA-CCFE-PR(23)1642023
The present paper is dedicated to the study of the discrepancies encountered in electron temperatures (Te) measurements carried out with Electron Cyclotron Emission (ECE) and Thomson Scattering (TS) diagnostics in the core of the JET tokamak. A large database of discharges has been collected, including high-performance scenarios perform…
-
UKAEA-CCFE-CP(23)642023
The fusion reaction between deuterium and tritium, D(T,n)4He is the main source of energy in future thermonuclear reactors. Charged fusion products of this reaction, α-particles (4He-ions), are born with an average energy of 3.5 MeV. Transferring energy to the thermal plasma during their slowing down, the…
-
UKAEA-CCFE-PR(23)1252023
In JET deuterium-tritium (D-T) plasmas, the fusion power is produced through thermonuclear reactions and reactions between thermal ions and fast particles generated by neutral beam injection (NBI) heating or accelerated by electromagnetic wave heating in the ion cyclotron range of frequencies (ICRF). To complement the experiments with 50/50 D/T …
-
UKAEA-CCFE-PR(23)1212023
In the paper we present an overview of interpretive modelling of a database of JET-ILW 2021 D-T discharges using the TRANSP code. Our main aim is to assess our capability of computationally reproducing the fusion performance of various D-T plasma scenarios using different external heating and D-T mixtures, and understand the performance driving mec…
-
UKAEA-CCFE-CP(23)542022
Several Ion Cyclotron Resonance Heating (ICRH) schemes in DT plasma have been considered for the ITER reactor [1]. Most of these heating schemes are minority heating at fundamental frequency. In DT plasma, both reactants can also absorb RF power as majorities at fundamental n=1 or harmonic n=2 frequency. Understanding benefits of directly heatin…
-
UKAEA-CCFE-PR(23)1142022
This work applies the coupled JINTRAC and QuaLiKiz-neural-network (QLKNN) model on the ohmic current ramp-up phase of a JET D discharge. The chosen scenario exhibits a hollow Te profile attributed to core impurity accumulation, which is observed to worsen with the increasing fuel ion mass from D to T. A dynamic D simulation was validated, evolvi…
-
UKAEA-CCFE-CP(23)482022
Recent experiments performed in JET at high level of plasma heating, in preparation of, and during the DT campaign have shown significant discrepancies between electron temperature measurements by Thomson Scattering (TS) and Electron Cyclotron Emission (ECE). In order to perform a systematic analysis of this effect, a simple model of bipolar dis…
Showing 11 - 20 of 61 UKAEA Paper Results