-
UKAEA-CCFE-PR(24)2612024
The fusion reaction between deuterium and tritium, D(T,n)4He is the main source of energy in future thermonuclear reactors. Alpha-particles (4He-ions) born with an average energy of 3.5MeV transferring energy to the thermal plasma during their slowing down, they should provide the self-sustained D-T
-
UKAEA-CCFE-PR(24)032024
To design a safe termination scenario for a burning ITER plasma is a challenge that requires extensive core plasma and divertor modelling. The presented work consists of coupled core/edge/SOL/divertor simulations, performed with the JINTRAC code, studying the Q=10 flat-top phase and exit phase of the ITER 15MA/5.3T DT scenario. The modelling uti…
-
UKAEA-CCFE-PR(25)2892023
This paper reports the first experiment carried out in deuterium–tritium addressing the integration of a radiative divertor for heat-load control with good confinement. Neon seeding was carried out for the first time in a D–T plasma as part of the second D–T campaign of JET with its Be/W wall environment. The technical difficulties linked to …
-
UKAEA-CCFE-PR(25)2682023
In the initial stages of ITER operation, ELM mitigation systems need to be commissioned. This requires controlled flat-top operation in type-I ELMy H-mode regimes. Hydrogen or helium plasma discharges are used exclusively in these stages to ensure no production of neutrons from fusion reactions. With the expected higher L-H power threshold of hy…
-
UKAEA-CCFE-PR(24)2452023
2021 JET experimental campaign has produced high stationary fusion power with 50%D 50%T discharges, operated with the ITER-relevant conditions i.e. operation with the baseline or hybrid scenario in the full metallic wall. It has provided a unique opportunity to assess the DT fusion power prediction capability before ITER DT experiments. This pap…
-
UKAEA-CCFE-PR(23)1822023
The reference ion cyclotron resonance frequency (ICRF) heating schemes for ITER deuterium-tritium (D-T) plasmas at the full magnetic field of 5.3 T are second harmonic heating of tritium and 3He minority heating. The wave-particle resonance location for these schemes coincide and are central at a wave frequency of 53 MHz at 5.3T [1]. Experiments ha…
-
UKAEA-CCFE-PR(23)1792023
-
UKAEA-CCFE-PR(23)1642023
The present paper is dedicated to the study of the discrepancies encountered in electron temperatures (Te) measurements carried out with Electron Cyclotron Emission (ECE) and Thomson Scattering (TS) diagnostics in the core of the JET tokamak. A large database of discharges has been collected, including high-performance scenarios perform…
-
UKAEA-CCFE-PR(23)1442023
A dataset of baseline DT plasmas with peripheral HFS fuelling pellets has been produced on JET, in order to mimic the situtation in ITER. During the pellet ablation phase prompt particle losses due to pellet triggered ELM can be detected. Regarding pellet deposition, the data indicate that plasmoids drift velocity might be smaller than predicted…
-
UKAEA-CCFE-PR(23)1212023
In the paper we present an overview of interpretive modelling of a database of JET-ILW 2021 D-T discharges using the TRANSP code. Our main aim is to assess our capability of computationally reproducing the fusion performance of various D-T plasma scenarios using different external heating and D-T mixtures, and understand the performance driving mec…
Showing 1 - 10 of 54 UKAEA Paper Results