-
UKAEA-CCFE-PR(22)132022
A local flux expansion method has been proposed for estimating the strike point position for the advanced divertor configuration on MAST Upgrade tokamak. The paper discusses the application and assesses the performance of the technique on a long-legged divertor plasma configuration on an operating device – the DIII-D tokamak. A comparison of …
-
UKAEA-CCFE-PR(21)822021
The benefits of an optimised Super-X divertor configuration in mitigating the steady-state power and particle fluxes to the surfaces of the MAST Upgrade divertor have been quantified by performing a detailed comparison with a conventional divertor for the first time. In otherwise identical plasmas with conventional and Super-X divertor configu…
-
UKAEA-CCFE-PR(21)792021
Reconstructions of plasma equilibria using magnetic sensors and a Dα constraint were routine during operation of the MAST spherical tokamak, but reconstructions using kinetic profiles was not. These are necessary for stability and disruption analysis of the MAST database, as well as going forward for operation in the upgrade to the device, MAST…
-
UKAEA-CCFE-PR(21)582021
This paper presents recent progress on the studies of neoclassical tearing modes (NTMs) on TCV, concerning the new physics learned and how this physics contributes to a better real-time (RT) control of NTMs. A simple technique that adds a small (sinusoidal) sweeping to the target electron cyclotron (EC) beam deposition location has proven effective…
-
UKAEA-CCFE-PR(23)852020
Assessment of the limits of stability of tokamak plasmas is key to operation in high fusion performance ranges without disruption of the plasma current. Projected equilibria have been generated for the MAST-U spherical tokamak experiment, an upgrade of the previous MAST device, in order to prepare for operation. These equilibria are scanned in p…
-
UKAEA-CCFE-CP(20)1032020
One of the issues faced by future fusion devices will be high target heat loads. Alternative divertors are a potential solution to the heat loads. They have been investigated in TCV and DIII-D, and will be investigated on MAST-U. To evaluate their effectiveness, accurate target heat flux and power balance measurements are required in these machines…
-
UKAEA-CCFE-CP(25)172018
Recent results from MAST address key physics issues for ITER operations and the design of future devices, by advancing our understanding of through analysis of high-resolution data and numerical modelling. Modelling of the interaction between filaments with BOUT++ indicates filaments separated by more than 5x their width move independently, and …
-
UKAEA-CCFE-CP(20)772018
Neutral beam injection is one of the primary auxiliary heating systems for tokamak plasmas. Once the neutral beam leaves the neutraliser collisions with background neutral particles in the beamline and tokamak vessel re-ionises part of the neutral beam. These particles can be deflected by the tokamak magnetic field, potentially damaging unshielded …
-
UKAEA-CCFE-CP(19)442019
MAST has undergone a substantial upgrade [1], featuring among other things several new poloidal field coils mostly distributed around the new closed-throat divertor structure and an enlarged centre column. The considerable changes have required the plasma control software to be substantially re-written. The MAST digital plasma control system […
-
UKAEA-CCFE-CP(19)162019
Edge Localised Modes (ELMs) in H-mode tokamak plasmas may be controlled or entirely suppressed by applying 3D magnetic perturbations (MPs). The applied perturbation is amplified by the plasma response, and it has previously been established that the size of the peeling component of this response is a reliable indicator for expected ELM control on A…
Showing 21 - 30 of 59 UKAEA Paper Results