-
UKAEA-CCFE-PR(23)932021
Magnetic feedback stabilization of the tearing mode (TM) is numerically investigated, utilizing the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681) for toroidal tokamak equilibria. Magnetic feedback generally (partially or fully) stabilizes the TM independent of the feedback coil configuration and the type of plasma equilibrium. The best c…
-
UKAEA-CCFE-PR(21)662021
A systematic numerical investigation of the n =1 ( n is the toroidal mode number) internal kink mode (IKM) stability is carried out, for a conventional aspect ratio tokamak plasma in the presence of parallel equilibrium flow or its poloidal/toroidal projections. The computational results, obtained utilizing the recently updated MARS-F code [Y. Q…
-
UKAEA-CCFE-PR(21)392021
A recently updated version of the MARS-F code [Y. Q. Liu et al. Phys. Plasmas 7, 3681 (2000); L. Li et al. Phys. Plasmas 25, 082512 (2018); G. L. Xia et al. Nucl. Fusion 59, 126035 (2019)] is utilized to numerically investigate the plasma screening effect on the applied resonant magnetic perturbation (RMP) field, assuming various equilibrium flo…
-
UKAEA-CCFE-PR(21)032021
The resistive wall mode (RWM) control on the HL-2M tokamak is simulated with the MARS-F code [Liu Y Q et al 2000 Phys. Plasmas 7 3681], aiming at quantifying control current and voltage requirements when more realistic issues are taken into account, i.e. the control power saturation and the sensor signal noise. The fluid model predicts a narrow st…
-
UKAEA-CCFE-PR(21)022021
In quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHOs) are believed to provide necessary radial transport to prevent occurrence of large edge localized modes. A systematic modeling study is performed here on the low-n EHOs in a DIII-D QH-mode plasma [Chen et al. 2016 Nucl. Fusion 56 076011], by utilizing the MARS-Q code [Liu et a…
-
UKAEA-CCFE-PR(23)852020
Assessment of the limits of stability of tokamak plasmas is key to operation in high fusion performance ranges without disruption of the plasma current. Projected equilibria have been generated for the MAST-U spherical tokamak experiment, an upgrade of the previous MAST device, in order to prepare for operation. These equilibria are scanned in p…
-
UKAEA-CCFE-PR(20)1022020
Modification of the external tearing index, Δ’ext , by magnetic feedback is analytically investigated, for the purpose of controlling the resistive plasma resistive wall mode (RP-RWM). The matching method is pursued, by deriving expressions for the close-loop Δ’ext and by linking it to the counterpart from the inner layer. Various…
-
UKAEA-CCFE-PR(20)1212019
Effects of parallel and poloidal flows, as well as the flow shear, on the resistive wall mode (RWM) instability have been numerically investigated in toroidally rotating plasmas, utilizing a recently updated version of the MARS-F code (Liu Y Q et al 2000 Phys. Plasmas 7 3681). A significant difference between these flow…
-
UKAEA-CCFE-PR(20)052019
Resistive plasma response to the n = 1 (n is the toroidal mode number) RMP field is systematically investigated for a high-beta hybrid discharge on ASDEX Upgrade. Both linear and quasi-linear response are modelled using the MARS-F and MARS-Q codes, respectively. Linear response computations show a large internal kink response when the plasma centra…
-
UKAEA-CCFE-PR(18)612018
Effects of toroidal plasma flow, magnetic drift kinetic damping as well as feedback control, on the resistive wall mode instability in HL-2M tokamak are numerically investigated, using the linear stability codes MARS-F/K (Liu Y Q et al 2000 Phys. Plasmas 7 3681, Liu Y Q et al 2008 Phys. Plasmas 15…
Showing 11 - 20 of 21 UKAEA Paper Results