-
UKAEA-CCFE-PR(19)252019
Deuterium pellets are injected into initially pure hydrogen H-mode plasma in order to control H:D isotope mixture. The pellets are deposited in outer 20% of minor radius, similar to that expected in ITER creating transiently hollow electron density profiles. The isotope mixture of H:D ~ 45:55% is obtained in the core with pellet fuelling throughput…
-
UKAEA-CCFE-PR(19)202019
The paper presents an analysis of disruptions occurring during JET-ILW plasma operations covering the period from the start of ILW (ITER-like wall) operation up to completion of JET operation in 2016. The total number of disruptions was 1951 including 466 with deliberately induced disruptions. The average disruption rate of unintended disruptions i…
-
UKAEA-CCFE-PR(18)472018
The Gyrokinetic Toroidal Code (GTC) has been used to study Toroidal Alfvén Eigenmodes (TAEs) in high-performance plasmas. Experiments performed at the Joint European Torus, where TAEs were driven by energetic particles arising from Neutral Beams, ion cyclotron resonant heating and resonantly excited by dedicated external antennas, have been simula…
-
UKAEA-CCFE-PR(18)152018
Particle transport is of a great importance for understanding physics of tokamak plasmas and planning future experiments on larger machines such as ITER. The subject was intensively studied in the past, particularly in relation to density peaking and presence of anomalous inward particle convection in L- and H-mode. While in the L-mode case presenc…
-
UKAEA-CCFE-PR(18)102018
In Ion-Temperature-Gradient (ITG) driven turbulence, the resonance condition leads to ion particle turbulent transport coefficients significantly larger than electron particle turbulent transport coefficients. This is shown in non-linear gyrokinetic simulations and explained by an analytical quasilinear model. It is then illustrated by JETTO-QuaLi…
-
CCFE-PR(17)422017
Quantitative comparisons are presented between gyrokinetic simulations and experimental values of the carbon impurity peaking factor in a database of JET H-modes during the carbon wall era. These plasmas feature strong NBI heating, hence high values of toroidal rotation and correponding gradient. Furthermore, the carbon profiles present particularl…
-
CCFE-PR(16)802016
The Joint European Torus (JET) high resolution Thomson scattering (HRTS) system measures radial electron temperature and density profiles. One of the key capabilities of this diagnostic is measuring the steep pressure gradient, termed the pedestal, at the edge of JET plasmas. The pedestal is susceptible to limiting instabilities, such as Edge Local…
-
2013
This work isolated the cause of the observed discrepancy between the electron temperature (Te) measurements before and after the JET Core LIDAR Thomson Scattering (TS) diagnostic was upgraded. In the upgrade process, stray light filters positioned just before the detectors were removed from the system. Modelling showed that the shift imposed on the…
-
2013
The LIDAR Thomson scattering concept was proposed in 1983 and then implemented for the first time on the JET tokamak in 1987. A number of modifications were performed and published in 1995, but since then no major changes were made for almost 15 years. In 2010 a refurbishment of the diagnostic was started, with as main goals to improve its performa…
Showing 41 - 49 of 49 UKAEA Paper Results