-
UKAEA-CCFE-PR(24)022023
This work studies the influence of RF waves in ICRH range of frequency on fusion alphas during recent JET D-T campaign. Fusion alphas from D-T reactions are born with energies of about 3.5MeV and therefore have significant Doppler shift enabling synergistic interaction between them and RF waves at broad range of frequencies including the ones fo…
-
UKAEA-CCFE-CP(23)672023
The fusion reaction between deuterium and tritium, D(T,n)4He is the main source of energy in future thermonuclear reactors. Charged fusion products of this reaction, α-particles (4He-ions), are born with an average energy of 3.5 MeV. Transferring energy to the thermal plasma during their slowing down, the…
-
UKAEA-CCFE-PR(23)1822023
The reference ion cyclotron resonance frequency (ICRF) heating schemes for ITER deuterium-tritium (D-T) plasmas at the full magnetic field of 5.3 T are second harmonic heating of tritium and 3He minority heating. The wave-particle resonance location for these schemes coincide and are central at a wave frequency of 53 MHz at 5.3T [1]. Experiments ha…
-
UKAEA-CCFE-PR(23)1812023
During the DTE2 campaign in the JET tokamak we performed a parameter scan in T and D-T complementing existing pulses in H and D. For the different main ion masses H-modes at fixed plasma current and magnetic field can have the pedestal pressure varying by a factor of 4 and the total pressure changing from betaN = 1.0 to 3.0. Based on this wide data…
-
UKAEA-CCFE-PR(23)1652023
This work studies the interaction between Radio Frequency (RF) waves used for Ion Cyclotron Resonance Heating (ICRH) and the fast D and T Neutral Beam Injected (NBI) ions in DT plasma. The focus is on the effect of this interaction, also referred to as synergistic effects, on the fusion performance in the recent JET DTE2 campaign. Experimental d…
-
UKAEA-CCFE-CP(23)642023
The fusion reaction between deuterium and tritium, D(T,n)4He is the main source of energy in future thermonuclear reactors. Charged fusion products of this reaction, α-particles (4He-ions), are born with an average energy of 3.5 MeV. Transferring energy to the thermal plasma during their slowing down, the…
-
UKAEA-CCFE-PR(23)1212023
In the paper we present an overview of interpretive modelling of a database of JET-ILW 2021 D-T discharges using the TRANSP code. Our main aim is to assess our capability of computationally reproducing the fusion performance of various D-T plasma scenarios using different external heating and D-T mixtures, and understand the performance driving mec…
-
UKAEA-CCFE-CP(23)392021
A key aim of the 2021 JET deuterium-tritium (D-T) experiments was to demonstrate steady high fusion power (10-15MW) with the ITER-like Be/W first wall. Plasmas were developed using D, repeated with T to investigate and mitigate isotope effects, and run with D-T to maximise fusion power. Compared with high current (q95~3) ‘baseline’ plasmas, …
-
UKAEA-CCFE-CP(23)192021
Control of plasma H:D isotope mix using solely shallow pellets (in H or D) was demonstrated in recent experiments, attaining ~50%:50% ratio. The isotope mix propagates from the edge to the core on the confinement timescale. Isotope dependence of energy confinement is within error bar to scaling laws. A dataset is collected for different pellet s…
-
UKAEA-CCFE-PR(21)472021
Visible emission from a broad range of tungsten charge states has complicated plasma ion temperature and toroidal rotation measurements on the JET tokamak since the installation of the ITER-like wall. A plethora of charge exchange emission lines from ions up to W 56+ and 21 suspected magnetic dipole emission lines have so far been observed. In p…
Showing 1 - 10 of 24 UKAEA Paper Results