-
UKAEA-STEP-PR(23)052022
In this paper we present optimized actuator trajectories, evolving in time and space, of non-inductive ramp-up scenarios for the Spherical Tokamak for Energy Production (STEP). These trajectories are computed by solving a non-linear, multi-objective, constrained, finite-time optimal control problem. A method unique to STEP ramp-up studies that prov…
-
UKAEA-CCFE-PR(22)332022
Screening of high-Z (W) impurities from the confined plasma by the temperature gradient at the hot edge pedestal of fusion-grade H-mode plasmas has been demonstrated for the first time in the JET-ILW tokamak. Through careful optimisation of the hybrid-scenario, deuterium plasmas with sufficient heating power (≳ 32MW), high enough ion temperature …
-
UKAEA-CCFE-PR(22)282022
A new quasilinear saturation model SAT3 has been developed for the purpose of calculating radial turbulent fluxes in the core of tokamak plasmas. The new model is shown to be able to better recreate the isotope mass dependence of nonlinear gyrokinetic fluxes compared to contemporary quasilinear models, including SAT2 [1], whilst performing at least…
-
UKAEA-CCFE-PR(22)212022
This paper describes the development of electromagnetic plasma burn-through model. Full circuit equations describing the currents in solenoid, poloidal field coil, and toroidally conducting passive structure have been integrated into the differential equation system of the plasma energy and particle balances in DYON. This enables consistent calcula…
-
UKAEA-CCFE-PR(21)772021
The optimum conditions for access to and sustainment of H-mode plasmas and their expected plasma parameters in the Pre-Fusion Power Operation 1 (PFPO-1) phase of the ITER Research Plan, where the additional plasma heating will be provided by 20 MW of Electron Cyclotron Heating (ECH), are assessed in order to identify key open R&D issues. The as…
-
UKAEA-CCFE-PR(21)772021
The optimum conditions for access and sustainment of H-mode plasmas and their expected plasma parameters in the Pre-Fusion Operation 1 (PFPO-1) phase of the ITER Research Plan, where the additional plasma heating will be provided by 20 MW of Electron Cyclotron Heating (ECH), are assessed. The assessment is performed on the basis of empirical and…
-
UKAEA-CCFE-PR(21)462021
The fusion performance of ELMy H-mode DT plasmas with q95 = 3 and \\beta_N = 1.8 (also referred to as medium-\\beta_N baseline scenario in the rest of this paper) are predicted with the JINTRAC suite of codes and the QuaLiKiZ transport model. The predictions are based on the analysis of DT plasmas from the first DT campaign
-
UKAEA-CCFE-CP(23)112020
Dimensionless experiments test the invariance of plasma physics to changes in the dimensional plasma parameters, when the canonical dimensionless parameters are conserved [1], [2]. Isotope identity experiments exploit the change in isotope ion mass A = mi/mp to obtain plasmas with identical dimensionless profiles in the same tokamak. However, condi…
-
UKAEA-CCFE-PR(23)882020
The pellet cycle of a mixed isotope tokamak plasma is successfully reproduced with reduced turbulent transport modelling within an integrated simulation framework. In JET tokamak experiments, deuterium pellets with reactor-relevant deposition characteristics were injected into a pure hydrogen plasma. Measurements of the isotope ratio profile inf…
-
UKAEA-CCFE-PR(23)872020
The isotope dependence of plasma transport has a significant impact on the performance of future D-T experiments in JET and ITER and eventually on the fusion gain and economics of future reactors. In preparation for future D-T operation on JET, dedicated experiments and comprehensive transport analysis were performed in H, D and H-D mixed plasma…
Showing 11 - 20 of 49 UKAEA Paper Results