-
UKAEA-CCFE-PR(22)012021
Electromagnetic instabilities and turbulence driven by the electron-temperature gradient are considered in a local slab model of a tokamak-like plasma, with constant equilibrium gradients (including magnetic drifts but no magnetic shear). The model describes perturbations at scales both larger and smaller than the electron inertial scale de…
-
UKAEA-CCFE-PR(21)022021
In quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHOs) are believed to provide necessary radial transport to prevent occurrence of large edge localized modes. A systematic modeling study is performed here on the low-n EHOs in a DIII-D QH-mode plasma [Chen et al. 2016 Nucl. Fusion 56 076011], by utilizing the MARS-Q code [Liu et a…
-
UKAEA-CCFE-CP(20)962020
EDGE2D-EIRENE simulations of upstream density and radiative power scans in JET H-mode type plasmas in vertical target predict a linear relationship between the electron and ion temperatures, and power across the separatrix. This is in contradiction to the two-point model equations which states that the upstream temperature scales at the po…
-
UKAEA-CCFE-PR(20)212020
Local linear gyrokinetic simulations show that electron temperature gradient (ETG) instabilities are the fastest growing modes for kyρi >~ 0.1 in the steep gradient region for a JET pedestal discharge (92174) where the electron temperature gradient is steeper than the ion temperature gradient. Here, ky is the wa…
-
UKAEA-CCFE-PR(20)1112019
Magnetised plasma turbulence can have a multiscale character: instabilities driven by mean temperature gradients drive turbulence at the disparate scales of the ion and the electron gyroradii. Simulations of multiscale turbulence, using equations valid in the limit of infinite scale separation, reveal novel cross-scale interaction mechanisms in …
-
UKAEA-CCFE-PR(19)282019
We study the amplitude modulation of the radial electric field constructed from the Langmuir probe plasma potential measurements at the edge of MAST. The Empirical Mode Decomposition technique is applied, which allows us to construct fluctuations on temporal scales of plasma turbulence, the Geodesic Acoustic Mode and these associated with the res…
-
UKAEA-CCFE-PR(19)132018
Multiple space and time scales arise in plasma turbulence in magnetic confinement fusion devices because of the smallness of the square root of the electron-to-ion mass ratio and the consequent disparity of the ion and electron thermal gyroradii and thermal speeds. Direct simulations of this turbulence that include both ion and electron space-ti…
-
CCFE-PR(16)672016
We show that a central characteristic of Super-X divertors, parallel area expansion fR (de ned as the ratio of the elementary area normal to the magnetic field at the target to that at the X-point, also known as total flux expansion), significantly changes the characteristics of the target plasma for fixed upstream conditions. To isolate the effect…
-
CCFE-PR(16)652016
In this paper we have developed a fluid model to study the radial mode structure of the reactive energetic geodesic acoustic modes (reactive EGAMs), a branch of GAM that becomes unstable in the presence of a cold fast ion beam. We have solved the resulting dispersion relationship, a second order ODE, both analytically in restricted cases and numeri…
-
CCFE-PR(16)482016
In electrostatic simulations of MAST plasma at electron-gyroradius scales, using the local flux-tube gyrokinetic code GS2 with adiabatic ions, we find that the longtime saturated electron heat flux (the level most relevant to energy transport) decreases as the electron collisionality decreases. At early simulation times, the heat flux quasisatura…
Showing 21 - 30 of 59 UKAEA Paper Results