-
UKAEA-CCFE-CP(21)092020
Understanding the effects of neutron irradiation of materials is one of the outstanding issues in the development of fusion technologies. The impact of this work derives from the opportunity, for the first time in a tokamak operating with a D-T plasma, to deliver experimental results which directly link to the nuclear characteristics of real sample…
-
UKAEA-CCFE-CP(20)1082020
In future fusion power plants, such as DEMO, D-T neutron emission is predicted to exceed 1×1021 neutrons/second. Accurately monitoring neutron energies and intensities will be the primary method for estimating fusion power, and calculating key parameters, including the tritium breeding ratio and nuclear heating. The Novel Neutron Det…
-
UKAEA-CCFE-CP(20)1062020
The measurement of the fusion neutron yield provides a direct relationship with fusion power and is hence an important measure of experimental performance. In pulsed neutron emission scenarios, such as those experienced in dense plasma focus devices, inertial confinement fusion and even in short-pulse tokamak experiments, considerations of the dyna…
-
UKAEA-CCFE-PR(20)1152020
Spectrum unfolding is a key tool used together with diagnostics in the determination of nuclear fields that are associated with a range of nuclear technologies spanning fusion, fission, nuclear medicine and accelerator domains. The underlying process requires a mathematical method for solving the Fredholm integral equation of the first kind. This p…
-
UKAEA-CCFE-PR(20)1092020
Tungsten is the prime candidate material for the plasma facing divertor system and first wall armor of future nuclear fusion reactors. However, the understanding of the microstructural and chemical evolution of pure tungsten under neutron irradiation is relatively unknown, in part due to a lack of experimental data on this topic. Here, single cr…
-
UKAEA-CCFE-PR(20)782020
During an accident with loss-of-coolant and air ingress in DEMO, the temperature of tungsten first wall cladding may exceed 1000oC and remain for months leading to tungsten oxidation. The radioactive tungsten oxide can be mobilized to the environment at rates of 10 – 150 kg per hour. Smart tungsten-based alloys are under develop…
-
UKAEA-CCFE-PR(20)692020
Molybdenum is a potential material for future nuclear fusion experiments and power plants. It has good thermo-mechanical properties and can be readily fabricated, making it attractive as an alternative material to tungsten (the current leading candidate) for high neutron flux and high thermal load regions of fusion devices. Unfortunately, exposu…
-
UKAEA-CCFE-CP(23)552019
Cooling water in the primary circuit in both fission and fusion nuclear reactors is unavoidably exposed to neutrons leading to the generation of problematic short-lived isotopes, most importantly, 16N (T1/2=7.3s) via the 16O(n,p)16N reaction. This presents a significant itinerant radiation source to consi…
-
UKAEA-CCFE-CP(23)092019
Recent studies of the neutron irradiation conditions predicted in the plasma-exposed first wall of a conceptual design of fusion DEMO power plant implementing the SPECTRA-PKA code have shown the importance of taking into consideration per-channel analysis of the high-energy threshold reactions for an accurate evaluation of their contribution to …
-
UKAEA-CCFE-CP(23)082019
Conventional means of fast neutron detection typically involves moderation and subsequent detection of thermal neutrons via gas filled detectors such as He-3, or alternatively indirect neutron detection via gamma activation systems. Whilst these are often the most conclusive systems for neutron detection, inherent timing and energy information asso…
Showing 41 - 50 of 90 UKAEA Paper Results