-
UKAEA-CCFE-CP(21)082021
The pedestal plays an important role in determining the confinement in tokamak H-mode plasmas. However, the steep pressure gradients in this transport barrier also lead to edge localized modes (ELMs) [1]. There is good understanding of the pedestal in type I ELM regimes [2], however, type I ELMs are known to damage plasma facing components and f…
-
UKAEA-CCFE-PR(21)692021
The ASCOT orbit-following code has been equipped with a model for simulating charge exchange (CX) of fast ions with background atoms in magnetically confined fusion plasmas. The model was successfully verified by comparing simulated reaction mean free paths to analytical values across a range of fusion-relevant parameters. ASCOT was used to simulat…
-
UKAEA-CCFE-PR(21)662021
A systematic numerical investigation of the n =1 ( n is the toroidal mode number) internal kink mode (IKM) stability is carried out, for a conventional aspect ratio tokamak plasma in the presence of parallel equilibrium flow or its poloidal/toroidal projections. The computational results, obtained utilizing the recently updated MARS-F code [Y. Q…
-
UKAEA-CCFE-PR(21)622021
Drift-reduced MHD models are widely used to study magnetised plasma phenomena, in particular for magnetically confined fusion applications, as well as in solar and astrophysical research. This letter discusses the choice of Ohm’s law in these models, the resulting dispersion relations for the dynamics parallel to the magnetic field, and the i…
-
UKAEA-CCFE-PR(21)612021
We use beam tracing — implemented with a newly-written code, Scotty — and the reciprocity theorem to derive a model for the linear backscattered power of the Doppler Backscattering (DBS) diagnostic. Our model works for both the O-mode and X-mode in tokamak geometry (and certain regimes of stellarators). We present the analytical derivation of o…
-
UKAEA-CCFE-PR(21)522021
Fusion has entered the engineering era. Moving from plasma science to experiments demonstrating the benefits of modified torus shapes and advanced divertor geometries, the ‘field’ has become an ‘industry’. Investors focus now on whether superconducting magnet joints are feasible in large tokamak designs and how to deliver net energy to g…
-
UKAEA-CCFE-PR(21)462021
The fusion performance of ELMy H-mode DT plasmas with q95 = 3 and \\beta_N = 1.8 (also referred to as medium-\\beta_N baseline scenario in the rest of this paper) are predicted with the JINTRAC suite of codes and the QuaLiKiZ transport model. The predictions are based on the analysis of DT plasmas from the first DT campaign
-
UKAEA-CCFE-PR(21)392021
A recently updated version of the MARS-F code [Y. Q. Liu et al. Phys. Plasmas 7, 3681 (2000); L. Li et al. Phys. Plasmas 25, 082512 (2018); G. L. Xia et al. Nucl. Fusion 59, 126035 (2019)] is utilized to numerically investigate the plasma screening effect on the applied resonant magnetic perturbation (RMP) field, assuming various equilibrium flo…
-
UKAEA-CCFE-PR(21)382021
Ion cyclotron resonance heating (ICRH) is one of the three additional heating schemes to be deployed on ITER. Its two antenna arrays, installed on the outboard midplane, will deliver 20 MW of RF power in the 40-55 MHz frequency range. The plasma-facing component of …
-
UKAEA-CCFE-PR(21)352021
Sustained operation of high-performance, ITER-baseline scenario plasmas at the high levels of input power (~< 40MA) required to achieve ~ 15 MW of D-T fusion power in JET-ILW requires careful optimisation of the fuelling to avoid an unacceptable disruption rate due to excessive radiation, primarily from W impurities, which are sputter…
Showing 61 - 70 of 500 UKAEA Paper Results