-
UKAEA-CCFE-PR(25)3392025
Fusion performance in a tokamak-reactor strongly depends on the confinement of thermalised α-particles (Helium (He) ash) in the core plasma region. Consequently, the development of He particle transport models and their validation in present experiments is an important step towards a more accurate prediction of fusion power production in future de…
-
UKAEA-CCFE-PR(25)3152025
Neutral Beam Injection (NBI) is a flexible auxiliary heating method for tokamak plasmas, capable of being efficiently coupled to the various plasma configurations required in the Tritium and mixed Deuterium-Tritium Experimental campaign (DTE2) on the JET device. High NBI power was required for high fusion yield and alpha particle studies and to …
-
UKAEA-CCFE-PR(25)3102025
An optical interlock protects the JET neutral beam ducts from damage if there is a fast pressure rise in the beam duct. The ability to trip during fault conditions and avoidance of false trips is limited by background light from the plasma and the additional light from radiation effects. A false trip occurred during the JET-DTE2 experimental cam…
-
UKAEA-CCFE-PR(25)3092025
Neutral Beam Injection (NBI) is a powerful and very commonly used tool on machines used in the development of magnetically confined fusion power. Not all the neutral beam power is deposited within the plasma. This shinethrough power must be dealt with in the plasma vessel and any components irradiated by it must be protected against excessive he…
-
UKAEA-CCFE-PR(22)142022
Helium ash alpha-particles at 100keV in magnetically confined fusion plasmas may have the same Larmor radius, as well as cyclotron frequency, as the energetic beam-injected deuterons that heat the plasma. While the velocity-space distribution of the helium ash is monotonically decreasing, that of the energetic deuterons is a delta-function in…
-
UKAEA-CCFE-CP(23)352021
Neutral Beam Injection (NBI) is a very flexible auxiliary heating method for tokamak plasmas, capable of being efficiently coupled to the various plasma configurations required in the Tritium and Deuterium–Tritium Experimental campaign (DTE2) to be undertaken in the JET device. In particular, experiments for high fusion yield and alpha particl…
-
UKAEA-CCFE-CP(23)262020
Observations of radiation in the ion cyclotron range of frequencies from the KSTAR tokamak and LHD heliotron-stellarator show that energetic neutral beam injected (NBI) ion populations can relax collectively in the edge plasma near the injection point. The resulting radiation is ion cyclotron emission (ICE), whose spectrum has strongly suprather…
-
UKAEA-CCFE-CP(20)1232020
-
UKAEA-CCFE-PR(20)172019
Core turbulent particle transport with multiple isotopes can display observable differences in behaviour between the electron and ion particle channels. Experimental observations at JET with mixed H-D plasmas and varying NBI and gas-puff sources [M. Maslov et al., Nucl. Fusion 7 076022 (2018)] inferred source dominated electr…
-
UKAEA-CCFE-PR(19)112019
Increased neutralisation and hence injected neutral beam power can be achieved by increasing the neutraliser target. This has the potential to increase the loading on the ion source backplate due to backstreaming electrons. Measurements of the backplate power loading due to backstreaming electrons are presented for the JET EP2 neutral beam injector…
Showing 1 - 10 of 18 UKAEA Paper Results