-
UKAEA-CCFE-PR(24)2282024
This work presents a system upgrade of the High Resolution Thomson Scattering (HRTS) diagnostic on JET that allows it to measure low temperature (1 to 500 eV) plasma pre- and post-Thermal quench (TQ), which would help to further the understanding of the physics in SPI experiments. The upgrade was done by connecting optic fibres from the original…
-
UKAEA-CCFE-PR(24)2092024
This study systematically explores the parameter space of disruption mitigation through shattered pellet injection in ITER with a focus on runaway electron dynamics, using the disruption modelling tool Dream. The physics fidelity is considerably increased compared to previous studies, by e.g., using realistic magnetic geometry, resistive wall confi…
-
UKAEA-CCFE-PR(24)2482023
This work describes the usage of Error Field Correction coil system [Barlow I. et al 2001 Fusion Eng. Des. 58-59 189], which is a set of 4 coils located external to the vessel of the JET device, with the aim of introducing non-axisymmetric n=1 magnetic field perturbations in various targeted plasma experiments. Besides being used to characterize…
-
UKAEA-CCFE-PR(23)1882022
In 2019, the JET-ILW was equipped with a Shattered Pellet Injector (SPI) system with a wide capability to allow studies on the efficacy of shattered pellets in reducing the electro-magnetic and the thermal loads during disruptions and the avoidance/suppression of the formation of runaway electrons. The fully commissioned system became operationa…
-
UKAEA-CCFE-CP(21)072021
The disruption mitigation system at ITER will include four shattered pellet injectors (SPI), which will be dedicated to the mitigation of electro-magnetic loads (EML), thermal loads and the avoidance and suppression of runaway electrons. Recently the JETILW was equipped with an SPI with a wide capability. Specifically: pellet diameter d = [4.57, 8.…
-
CCFE-PR(17)362015
Disruptions, the fast accidental losses of plasma current and stored energy in tokamaks, represent asignificant risk to the mechanical structure as well as the plasma facing components of reactor-scale fusion facilities like ITER. At JET, the tokamak experiment closest to ITER in terms of operating parameters and size, massive gas injection has bee…
-
2014
The ITER-like wall (ILW) at JET is a unique opportunity to study the combination of material (beryllium and tungsten) that will be used for the plasma facing components (PFC) in ITER. Both the limiters (Be) and divertor (CFC W coated and bulk W) have been designed to maximise their power handling capability. During the last experimental campaign (O…
-
2014
The most recent JET campaign has focused on characterizing operation with the "ITER-like" wall. One of the questions that needed to be answered is whether the auxiliary heating methods do not lead to unacceptably high levels of impurity influx, preventing fusion-relevant operation. In view of its high single pass absorption, hydrogen minority funda…
-
2013
Disruptions are of significant concern to future devices, due to the large amount of energy released during the rapid quenching of the plasma. Disruption mitigation has been performed on MAST, to study the effect on heat loads and disruption time scales in a spherical tokamak. Massive gas injection is performed using a disruption mitigation valve c…
Showing 1 - 9 of 9 UKAEA Paper Results
Page 1 of 1