-
UKAEA-CCFE-PR(23)942022
Divertor detachment requires plasma-neutral interactions which dissipate momentum, power and particles simultaneously. Plasma-molecular interactions can result in molecular ions which react with the plasma. This can contribute to detachment through molecular activated recombination (MAR) and molecular activated dissociation (MAD), both of which cre…
-
UKAEA-CCFE-PR(22)552022
The MAST-U fusion plasma research device, the upgrade to the Mega Amp Spherical Tokamak, has recently completed its first campaign of physics operation. MAST-U operated with Ohmic, or one or two neutral beams for heating, at 400-800 kA plasma current, in conventional or “SuperX” divertor configurations. Equilibrium reconstructions provide key p…
-
UKAEA-CCFE-PR(22)502022
Fusion power plant designs based on magnetic confinement, such as the tokamak design, offer a promising route to sustainable fusion power but require robust exhaust solutions capable of tolerating intense heat and particle fluxes from the plasma to material surfaces. Turbulent plasma transport in the divertor volume – the region where the plasma-…
-
UKAEA-CCFE-CP(22)052022
A study of a dataset of JET H-mode plasma with the Be/W ITER-like wall (JET-ILW) shows that reaching the edge MHD ballooning limit leads to confinement degradation. However, unlike JET plasmas with a carbon wall (JET-C), the JET-ILW plasmas stay in a marginal dithering phase for a relatively long period, associated with a higher (20%) H-mode den…
-
UKAEA-CCFE-PR(22)232022
In this paper we a first qualitative analysis of the atomic and molecular processes at play during detachment in the MAST-U Super-X divertor, using divertor spectroscopy data. Our analysis indicates a wide operational regime of detachment of the MAST-U super-X divertor, which can be roughly separated in four phases: 1) The ionisation fro…
-
UKAEA-CCFE-PR(22)212022
This paper describes the development of electromagnetic plasma burn-through model. Full circuit equations describing the currents in solenoid, poloidal field coil, and toroidally conducting passive structure have been integrated into the differential equation system of the plasma energy and particle balances in DYON. This enables consistent calcula…
-
UKAEA-CCFE-PR(25)2772021
In a snowflake (SF) divertor, two magnetic field nulls are placed close to each other, creating four strike points (SPs) compared to two in a standard X-point divertor. In preparation for MAST-U experiments, magnetic configurations with the standard and SF divertors with various locations and separation distances of the nulls were modeled using …
-
UKAEA-CCFE-PR(21)822021
The benefits of an optimised Super-X divertor configuration in mitigating the steady-state power and particle fluxes to the surfaces of the MAST Upgrade divertor have been quantified by performing a detailed comparison with a conventional divertor for the first time. In otherwise identical plasmas with conventional and Super-X divertor configu…
-
UKAEA-CCFE-CP(21)102021
This paper shows experimental results from the TCV tokamak that indicate plasma-molecule interactions involving D+2 and possibly D− play an important role as sinks of energy (through hydrogenic radiation as well as dissociation) and particles during divertor detachment if low target temperatures (< 3 eV) are achieved. Bot…
-
UKAEA-CCFE-CP(21)062021
In this work we provide experimental insights into the impact of plasma-molecule interactions on divertor detachment by applying new spectroscopic analysis techniques to the hydrogen Balmer line series to investigate how both atom and plasma-molecule interactions impact particle balance. Our analysis on a representative L-mode TCV density ramp dis…
Showing 21 - 30 of 94 UKAEA Paper Results