-
UKAEA-CCFE-PR(24)2622023
STORM is a plasma turbulence code capable of simulating 3d turbulence across the full scrape-off layer of a tokamak fusion reactor, using a drift reduced, collisional fluid model. STORM uses mostly finite difference schemes, with a staggered grid in the direction parallel to the magnetic field. We describe the model, geometry and initialisation opt…
-
UKAEA-CCFE-PR(23)1502023
Power exhaust is a critical challenge for spherical tokamak reactors, making the design, optimisation and control of advanced divertor configurations crucial. These tasks are greatly simplified if the poloidal magnetic fields in the core and divertor regions can be varied independently. We present a novel method which fixes the core plasma equil…
-
UKAEA-CCFE-PR(23)1452023
In this manuscript we present the recently developed flexible framework for building both fluid and electron kinetic models of the tokamak Scrape-Off Layer in 1D - ReMKiT1D (Reactive Multi-fluid and Kinetic Transport in 1D). The framework can handle systems of non-linear ODEs, various 1D PDEs arising in fluid modelling, as well as PDEs arising from…
-
UKAEA-CCFE-CP(22)042022
The protection strategy adopted for the European DEMOnstration (EU-DEMO) fusion power reactor foresees the use of sacrificial components–referred to as limiters–dealing with plasma-wall contacts. Their aim is to protect the first wall (FW) against the huge amount of plasma energy (up to GigaJoules) released in a few milliseconds during disrupti…
-
UKAEA-CCFE-CP(20)782018
We report on the selection, implementation and successful demonstration of a new automated laser control system for JET’s Far Infrared Interferometer, a diagnostic essential for machine protection. The new control system allows all laser subsystems and sensors to be interlocked and operated remotely in a precise and preprogramed manner, functiona…
-
UKAEA-CCFE-PR(19)162019
The STORM module of BOUT++ [L. Easy et al., Phys. Plasmas 21, 122515 (2014)] is generalized to simulate plasma turbulence at the periphery of tokamak devices in diverted configuration and it is used to carry out three-dimensional nonlinear flux-driven simulations in double null configuration with realistic experimental par…
-
UKAEA-CCFE-CP(18)032018
Recent results from MAST address key physics issues for ITER operations and the design of future devices, by advancing our understanding of through analysis of high-resolution data and numerical modelling. Modelling of the interaction between filaments with BOUT++ indicates filaments separated by more than 5x their width move independently, and …
-
UKAEA-CCFE-PR(19)052018
HALO (HAgis LOcust) solves the initial value Vlasov-Maxwell problem perturbatively for application to certain nonlinear wave-particle problems in tokamak plasmas. It uses the same basic approach as the HAGIS code (Pinches et al., 1998) for wave evolution but is built on the LOCUST-GPU full-orbit code (Akers et al., 2012) for the solution of the Ham…
-
CCFE-PR(17)502017
The interaction of L-mode and inter-ELM Scrape-Off Layer (SOL) filaments is investigated by simulating the dynamics of two seeded density perturbations with different initial separation. A numerical campaign of 2D and 3D simulations is presented to explore the effect that different filaments' perpendicular size and relative distance have on their r…
-
CCFE-PR(16)382016
Simulations have been carried out to establish how electron thermal physics, introduced in the form of a dynamic electron temperature, affects isolated filament motion and dynamics in 3D. It is found that thermal effects impact filament motion in two major ways when the filament has a significant temperature perturbation compared to its density per…
Showing 1 - 10 of 20 UKAEA Paper Results