-
UKAEA-CCFE-PR(21)562021
Hydrogen isotopes are retained in materials for fusion power applications, changing both hydrogen embrittlement and tritium inventory as the microstructure undergoes irradiation damage. But modelling of the highly damaged regime – over 0.1 displacements per atom (dpa) – where asymptotic saturation is observed, is difficult because a highly dama…
-
UKAEA-CCFE-PR(21)462021
The fusion performance of ELMy H-mode DT plasmas with q95 = 3 and \\beta_N = 1.8 (also referred to as medium-\\beta_N baseline scenario in the rest of this paper) are predicted with the JINTRAC suite of codes and the QuaLiKiZ transport model. The predictions are based on the analysis of DT plasmas from the first DT campaign
-
UKAEA-CCFE-PR(21)412021
Self-passivating Metal Alloys with Reduced Thermo-oxidation (SMART) are under development for the primary application as plasma-facing materials of the first wall in a fusion DEMOnstration power plant (DEMO). SMART materials must combine the suppressed oxidation in case of an accident and an acceptable plasma performance during the regular operatio…
-
UKAEA-CCFE-PR(21)402021
The ability to detect undesired volumetric defects in reactor components could affect the safety and reliability of a fusion power plant and change the expected lifetime and performance of the reactor. This is even more true for critical reactor parts like plasma-facing components which have to withstand challenging in-vessel conditions due to a co…
-
UKAEA-CCFE-PR(21)382021
Ion cyclotron resonance heating (ICRH) is one of the three additional heating schemes to be deployed on ITER. Its two antenna arrays, installed on the outboard midplane, will deliver 20 MW of RF power in the 40-55 MHz frequency range. The plasma-facing component of …
-
UKAEA-CCFE-PR(21)362021
The interaction of Alfvén Eigenmodes (AEs) and energetic particles will determine the success of future tokamaks. In JET, eight in-vessel antennas were installed to actively probe stable AEs with frequencies ranging 25 – 250 kHz and toroidal mode numbers abs(n)< 20. During the 2019-2020 deuterium campaign, almost 7500 resonances and …
-
UKAEA-CCFE-PR(21)352021
Sustained operation of high-performance, ITER-baseline scenario plasmas at the high levels of input power (~< 40MA) required to achieve ~ 15 MW of D-T fusion power in JET-ILW requires careful optimisation of the fuelling to avoid an unacceptable disruption rate due to excessive radiation, primarily from W impurities, which are sputter…
-
UKAEA-CCFE-PR(21)332021
Prediction of material performance in fusion reactor environments relies on computational modelling, and will continue to do so until the first generation of fusion power plants come on line and allow long-term behaviour to be observed. In the meantime, the modelling is supported by experiments that attempt to replicate some aspects of the eventua…
-
UKAEA-CCFE-PR(21)322021
For the first time, a digital Mirror Langmuir probe (MLP) has successfully
-
UKAEA-CCFE-PR(21)302021
Recent JET Deuterium experiments with an advanced internal transport barrier (ITB) scenario have been performed to clearly observe destabilised toroidicity-induced Alfvén eigenmodes (TAEs) by fast ions; interestingly, these also exhibit unstable electromagnetic (EM) perturbations in the sub-TAE frequency range. We identify such EM perturbations to…
Showing 121 - 130 of 500 UKAEA Paper Results