-
UKAEA-CCFE-CP(19)332019
The initial Ohmic current ramp phase of JET hybrid plasmas, including a current ‘overshoot’ before the main heating, is used to optimise the q-profile shape to allow access to high β and avoid MHD instabilities [1]. Such hybrid plasmas have never been operated using tritium (T) or mixed deuterium-tritium (D-T) fuel. However, experiments with i…
-
UKAEA-CCFE-CP(19)202019
Reducing the plasma power exhaust impacting on plasma facing components during steady state operation is one of the major design issues in future tokamaks such as ITER. Impurity seeding, e.g. with N, is one method of achieving this and has been used for a long time in tokamak research [1]. In this work we exploit a recently developed spectroscopic …
-
UKAEA-CCFE-PR(19)622019
The pedestal structure, ELM losses and linear MHD stability are analysed in a series of JET-ILW H and D type I ELMy H-mode plasmas. The pedestal pressure (pPED) is typically higher in D than in H at the same input power, with the difference mainly due to lower density in H than in D. At the same input power, the pedestal electron pres…
-
UKAEA-CCFE-PR(19)522019
This work describes the behaviour of the global energy and particle confinement on JET observed in a massive database of H-mode plasmas covering almost whole lifetime of JET operations, both with carbon and metal wall. The analysis is focused on type I ELMy H-modes in stationary phases. It is shown that plasma density in that regime is determined m…
-
UKAEA-CCFE-PR(19)492019
EDGE2D-EIRENE (the ‘code’) simulations show that radial electric field, Er, in the near scrape-off layer (SOL) of tokamaks can have large variations leading to a strong local E´B shear greatly exceeding that in the core region. This was pointed out in simulations of JET plasmas with varying divertor geometry, where the magnetic conf…
-
UKAEA-CCFE-PR(19)302019
Alfven eigenmodes driven by energetic particles are routinely observed in tokamak plasmas. These modes consist of poloidal harmonics of shear Alfven waves coupled by inhomogeneity in the magnetic field. Further coupling is introduced by 3D inhomogeneities in the ion density during the assimilation of injected pellets. This additional coupling modi…
-
UKAEA-CCFE-PR(19)252019
Deuterium pellets are injected into initially pure hydrogen H-mode plasma in order to control H:D isotope mixture. The pellets are deposited in outer 20% of minor radius, similar to that expected in ITER creating transiently hollow electron density profiles. The isotope mixture of H:D ~ 45:55% is obtained in the core with pellet fuelling throughput…
-
UKAEA-CCFE-PR(19)212019
The JET exploitation plan foresees D-T operations in 2020 (DTE2). With respect to the first D-T campaign in 1997 (DTE1), when JET was equipped with a carbon wall, the experiments will be conducted in presence of a beryllium-tungsten ITER-like wall (ILW) and will benefit from an extended and improved set of diagnostics and higher additional heating …
-
UKAEA-CCFE-CP(18)112018
Results of simulations of the sawtooth-induced redistribution of fast ions in JET and ITER with the code OFSEF are presented. The dependence of the redistribution on the particle parameters (energy and pitch angle) is studied. The redistribution of the trapped and marginally passing particles is found to exhibit barrier-like behaviour at the separa…
-
UKAEA-CCFE-CP(18)022018
Showing 101 - 110 of 229 UKAEA Paper Results