-
UKAEA-CCFE-PR(23)112023
A prototype infrared video bolometer (IRVB) was succesfully deployed in MAST-U, the first deployment of such a diagnostic in spherical tokamaks. The IRVB was designed to study the radiation around the x-point and has the potential to return emissivity profiles of unprecedented spatial resolution. The system was fully characterised prior installatio…
-
UKAEA-CCFE-CP(23)442022
Due to their relatively higher Vbeam/VAlvén ratio, spherical tokamaks are ideal to investigate high-frequency modes such as Compressional Alfvén Eigenmodes (CAEs) and Global Alfvén Eigenmodes (GAEs), and so they have been previously studied in MAST [1, 2]. Besides, the recently installed scintillator-based Fast-Ion Loss …
-
UKAEA-CCFE-CP(23)412022
The MAST-U spherical tokamak has extensive capabilities to produce and explore strongly shaped plasmas and alternative divertor configurations, especially the Super-X. Robust and accurate reconstructions of plasma equilibria are the foundation of many physics analyses, as well as being important intershot for informing operation of the tokamak. …
-
UKAEA-CCFE-PR(22)552022
The MAST-U fusion plasma research device, the upgrade to the Mega Amp Spherical Tokamak, has recently completed its first campaign of physics operation. MAST-U operated with Ohmic, or one or two neutral beams for heating, at 400-800 kA plasma current, in conventional or “SuperX” divertor configurations. Equilibrium reconstructions provide key p…
-
UKAEA-CCFE-PR(22)232022
In this paper we a first qualitative analysis of the atomic and molecular processes at play during detachment in the MAST-U Super-X divertor, using divertor spectroscopy data. Our analysis indicates a wide operational regime of detachment of the MAST-U super-X divertor, which can be roughly separated in four phases: 1) The ionisation fro…
-
UKAEA-CCFE-CP(23)202021
Disruption prediction and avoidance is critical for ITER and reactor-scale tokamaks to maintain steady plasma operation and to avoid damage to device components. The present status and results from the disruption event characterization and forecasting (DECAF) research effort are shown. The DECAF paradigm is primarily physics-based and provides q…
-
UKAEA-CCFE-CP(23)152021
In preparation for high fusion plasma performance operation of the newly operating spherical tokamak MAST-U, the equilibrium and stability properties of plasmas in the MAST database, as well as projections for MAST-U, are explored. The disruption event characterization and forecasting (DECAF) code is utilized to map disruptions in MAST, particul…
-
UKAEA-CCFE-PR(21)822021
The benefits of an optimised Super-X divertor configuration in mitigating the steady-state power and particle fluxes to the surfaces of the MAST Upgrade divertor have been quantified by performing a detailed comparison with a conventional divertor for the first time. In otherwise identical plasmas with conventional and Super-X divertor configu…
-
UKAEA-CCFE-PR(21)792021
Reconstructions of plasma equilibria using magnetic sensors and a Dα constraint were routine during operation of the MAST spherical tokamak, but reconstructions using kinetic profiles was not. These are necessary for stability and disruption analysis of the MAST database, as well as going forward for operation in the upgrade to the device, MAST…
-
2018
Access conditions for full suppression of edge localised modes (ELMs) by magnetic perturbations (MP) in low density high confinement mode (H-mode) plasmas are studied in the ASDEX Upgrade tokamak. The main empirical requirements for full ELM suppression in our experiments are: 1. The poloidal spectrum of the MP must be aligned for best plasma respo…
Showing 21 - 30 of 42 UKAEA Paper Results