-
UKAEA-CCFE-CP(19)422019
Plasma detachment needs to be achieved in ITER [1] and future devices such as DEMO to dissipate most of the power in the Scrape-Off-Layer (SOL) and reduce the particle flux reaching the divertor targets. In order to enhance our capability to improve current, and design future tokamaks, we must improve our understanding of the relative effect on det…
-
UKAEA-CCFE-CP(19)402019
In magnetic confinement devices, boundary turbulence is responsible for transporting plasma and energy from the well-confined region towards the material surfaces where it can severely harm reactor relevant machines. It is therefore essential to develop a solid understanding of the mechanisms behind the transport in the edge of the plasma. Large fl…
-
UKAEA-CCFE-PR(19)782019
A new inversion technique is presented for the identification of plasma filaments in wide-angle visible camera data. Direct inversion of camera data onto a field aligned basis is a poorly conditioned problem which is overcome by breaking the analysis into a `psuedo-inversion’ step followed by a `point spread function correction’ step. Camera …
-
UKAEA-CCFE-CP(19)202019
Reducing the plasma power exhaust impacting on plasma facing components during steady state operation is one of the major design issues in future tokamaks such as ITER. Impurity seeding, e.g. with N, is one method of achieving this and has been used for a long time in tokamak research [1]. In this work we exploit a recently developed spectroscopic …
-
UKAEA-CCFE-PR(19)472019
High bandwidth, high spatial resolution measurements of electron temperature, density and plasma potential are valuable for resolving turbulence in the boundary plasma of tokamaks. While conventional Langmuir probes can provide such measurements either their temporal or spatial resolution is limited: the former by the sweep rate necessary for obtai…
-
UKAEA-CCFE-CP(18)032018
Recent results from MAST address key physics issues for ITER operations and the design of future devices, by advancing our understanding of through analysis of high-resolution data and numerical modelling. Modelling of the interaction between filaments with BOUT++ indicates filaments separated by more than 5x their width move independently, and …
-
UKAEA-CCFE-PR(19)072018
Ray-tracing techniques are applied to divertor filtered imaging, a diagnostic that has long been plagued by polluting reflected light features in metal walled fusion machines. A physically realistic surface reflection model is developed from a Cook-Torrence microfacet BRDF model. Camera calibration images of in-vessel point lights at JET are use…
-
UKAEA-CCFE-PR(18)822018
Recent experiments on TCV have made significant progress toward partial detachment of the outer divertor in neutral beam heated H-mode plasmas. The heating power required to enter H-mode was measured in a range of divertor configurations, finding that, in the vicinity of the PL-H/ne curve, the threshold power is largely independent of the poloidal …
-
UKAEA-CCFE-PR(19)032018
A new 1D divertor plasma code, SD1D, has been used to examine the role of recombination, radiation, and momentum exchange in detachment. Neither momentum or power losses by themselves are found to be sufficient to produce target ion flux rollover in detachment; radiative power losses are required to a) limit and reduce the ionization source and …
-
UKAEA-CCFE-PR(18)362018
This paper further analyses the EDGE2D-EIRENE simulations presented by [Chankin et al (2017 Nucl. Mater. Energy 12 273], of L-mode JET plasmas in vertical-vertical (VV) and vertical-horizontal (VH) divertor configurations. As expected, the simulated outer divertor ionisation source peaks near the separatrix in VV …
Showing 41 - 50 of 94 UKAEA Paper Results