-
UKAEA-CCFE-CP(23)402022
Shattered pellet injection (SPI), with research started in recent years, is the current concept for the ITER disruption mitigation system (DMS) to prevent disruption-related damage. Compared with impurity SPI, pure deuterium (D2) SPI could contribute to runaway electron (RE) avoidance in ITER via a strong dilution cooling before the thermal quen…
-
UKAEA-CCFE-PR(23)1002021
The properties of tungsten make it ideal for use as a plasma facing surface in the divertor of large plasma machines such as JET and ITER. However, the intense heat and particle fluxes that fall on the divertor surfaces lead to its release from these surfaces into the plasma and it is necessary to model its transport from the divertor and plasma…
-
UKAEA-CCFE-CP(20)1232020
-
UKAEA-CCFE-PR(20)1342020
Divertor Monitoring Pulses (DiMPle) have been run in JET from the C35 campaign onwards. They provide an opportunity to study the impurity contamination of the plasma when it is limited by different surfaces within the machine, as well as the longer term behaviour of the impurities. In these discharges the plasma is first limited on the outer wall, …
-
UKAEA-CCFE-PR(20)132019
Beryllium is being adopted for plasma facing walls in fusion reactors. This has led to the observation of emissions from the A 2Π state of beryllium hydride. Use of these emissions to monitor Be erosion requires electron impact excitation rates. Cross sections for electron-impact vibrational excitation within the X 2Σ + state and vibrationally…
-
UKAEA-CCFE-CP(19)482019
An understanding of the plasma edge and divertor is essential for predicting the performance of next-step machines such as ITER. Transport codes used to study the divertor behaviour [1] employ atomic physics data in two applications. The first is to predict the power radiated by the fuel and impurity atoms, which is carried out as a post-processing…
-
UKAEA-CCFE-CP(19)172019
-
UKAEA-CCFE-PR(18)682018
Helium is widely used as a fuel or minority gas in laboratory fusion experiments, and will be present as ash in DT thermonuclear plasmas. It is therefore essential to have a good understanding of its atomic physics. To this end He II population modelling has been undertaken for the spectroscopic levels arising from shells with principal quantum…
-
CCFE-PR(15)262015
A discrepancy in the divertor radiated powers between EDGE2D-EIRENE simulations, both with and without drifts, and JET-ILW experiments employing a set of NBI-heated L-mode discharges with step-wise density variation is investigated. Results from a VUV/visible poloidally scanning spectrometer are used together with bolometric measurements to determi…
-
2014
Magnetically confined plasmas, such as those produced in the tokamak JET, contain measurable amounts of impurity ions produced during plasma-wall interactions (PWI) from the plasma-facing components and recessed wall areas. The impurities, including high- and mid-Z elements such as tungsten (W) from first wall tiles and nickel (Ni) from Inconel str…
Showing 1 - 10 of 14 UKAEA Paper Results