Journals

Showing 1 - 10 of 52 Journals Results
2020
UKAEA-CCFE-PR(20)78

During an accident with loss-of-coolant and air ingress in DEMO, the temperature of tungsten first wall cladding may exceed 1000oC and remain for months leading to tungsten oxidation. The radioactive tungsten oxide can be mobilized to the environment at rates of 10 – 150 kg per hour. Smart tungsten-based alloys are under develop…

Preprint Purchase
2019
UKAEA-CCFE-PR(19)44

The low energy structures of irradiation-induced defects have been studied in detail, as these determine the available modes by which a defect can diffuse or relax. As a result, there are many studies concerning the relative energies of possible defect structures, and empirical potentials are commonly fitted to or evaluated with respect to these en…

Preprint Published
2019
UKAEA-CCFE-PR(19)42

High temperature, neutron irradiated single crystal tungsten, with a post irradiation composition of W-1.20±0.11at.%Re-0.11±0.05at.%Os-0.03±0.01at.%Ta was characterised using a combination of Atom Probe Tomography (APT) and Scanning Transmission Electron Microscopy (STEM). APT showed that within nanoscale clusters of Re/Os, the atomic density wa…

Preprint Purchase
2019
UKAEA-CCFE-PR(19)38

Multi-component alloy Fe-Cr-Mn-Ni is a promising new candidate system not only because of its potential application as structural materials beyond conventional austenitic steels but also for fundamental physics role played by Mn element in Fe-Cr-Ni based alloys. In this work, the phase stability of magnetic face-centered cubic (fcc) Fe-Cr-Mn-Ni sys…

Preprint Published
2019
UKAEA-CCFE-PR(19)37

The diffusion of defects in crystalline materials governs macroscopic behaviour in a wide range of processes, including alloying, precipitation, phase transformation, and creep. In real materials, intrinsic defects are unavoidably bound to static trapping centres such as impurity atoms, meaning that their diffusion is controlled by the de-trapping …

Preprint Purchase
The published version of this paper is currently under embargo and will be available on 27/01/2021
2019
UKAEA-CCFE-PR(19)22

A viable fusion power station is reliant on the development of plasma facing materials that can withstand the combined effects of high temperature operation and high neutron doses. In this study we focus on W, the most promising candidate material. Re is the primary transmutation product and has been shown to induce embrittlement through cluster fo…

Preprint Published
2018
UKAEA-CCFE-PR(18)77

A novel W-based refractory high entropy alloy with outstanding radiation resistance has been developed. The alloy was grown as thin films showing a bimodal grain size distribution in the nanocrystalline and ultrafine regimes and a unique 4 nm lamella-like structure revealed by atom probe tomography (APT). Transmission electron microscopy (TEM) and …

Preprint Published
2017
CCFE-PR(17)64

In a fusion tokamak, the plasma of hydrogen isotopes is in contact with tungsten at the surface of a divertor. In the bulk of the material, the hydrogen concentration profile tends towards dynamic equilibrium between the flux of incident ions and their trapping and release from defects, either native or produced by ion and neutron irradiation. The …

Preprint Published
2017
CCFE-PR(17)71

We present an empirical interatomic potential for tungsten, particularly well suited for simulations of vacancy-type defects. We compare energies and structures of vacancy clusters generated with the empirical potential with an extensive new database of values computed using density functional theory, and show that the new potential predicts low-en…

Preprint Purchase
2017

The structural and magnetic properties of CoCrFeyNi and CoCrFeNi-Pdx alloys earlier investigated experimentally by x-ray and neutron diffraction techniques and magnetometry have been theoretically reproduced using two complementary approaches for electronic structure calculations, i.e. the Korringa–Kohn–Rostoker method with the coherent potenti…

Published