Journals

Showing 1 - 9 of 9 Journals Results
2020
UKAEA-CCFE-PR(20)116

The findings of an investigation into the properties of the three dimensional (3D) saturated fluctuation intensity of the electric potential in gyrokinetic turbulence simulations is presented. Scans in flux surface elongation and Shafranov shift are used to isolate the tokamak geometric dependencies. The potential intensity required in order to com…

Preprint
2019
UKAEA-CCFE-PR(19)75

The evolution of the JET high performance hybrid scenario, including central accumulation of the tungsten (W) impurity, is reproduced with predictive multi-channel integrated modelling over multiple confinement times using first-principle based models. 8 transport channels are modelled predictively, with self-consistent sources, radiation and magne…

Preprint Purchase
2018
UKAEA-CCFE-PR(18)51

An effect due to fusion born triton production has been observed in JET high-performance deuterium plasma discharges with NBI and H-minority ICRF heating, using DD and DT neutron spectrometry as well as fusion product loss measurements. The observations show that increase of the triton burn up rate leads to decrease of second harmonic ωcH

Preprint Published
2018
UKAEA-CCFE-PR(18)13

For the first time, over five confinement times, the self-consistent flux driven time evolution of heat, momentum transport and particle fluxes of electrons and multiple ions including Tungsten (W) is modeled within the integrated modeling platform JETTO [Romanelli M et al PFR 2014], using first principle-based codes : namely, QuaLiKiz [Bourd…

Preprint Published
2017
CCFE-PR(17)47

Heavy impurities, such as tungsten (W), can exhibit strongly poloidally asymmetric density profiles in rotating or radio frequency heated plasmas. In the metallic environment of JET, the poloidal asymmetry of tungsten enhances its neoclassical transport up to an order of magnitude, so that neoclassical convection is expected to dominate over turbul…

Preprint
2015
CCFE-PR(15)44

The effects of poloidal asymmetries and heated minority species are shown to be necessary to accurately describe heavy impurity transport in present experiments in JET and ASDEX Upgrade. Plasma rotation, or any small background electrostatic field in the plasma, such as that generated by anisotropic external heating can generate strong poloidal den…

Preprint Published
2015

The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under construction in Cadarache (France). At JET, the neutron emission profile of Deuterium (D) or Deuterium-Tritium (D…

Published
2014

JET equipped with ITER-like wall (a beryllium wall and a tungsten divertor) can provide auxiliary heating with power up to 35MW, producing a significant population of alpha-particles in DT operation. The direct measurements of alphas are very difficult and alpha-particle studies require a significant development of dedicated diagnostics. JET now ha…

Published
2014

The Joint European Toras (JET, Culham, UK) is the largest tokamak in the world. It is devoted to nuclear fusion experiments of magnetic confined Deuterium (D) or Deuterium-Tritium (DT) plasmas. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under…

Published