UKAEA Journals

Showing 11 - 20 of 27 Journals Results
2018
UKAEA-CCFE-PR(18)13

For the first time, over five confinement times, the self-consistent flux driven time evolution of heat, momentum transport and particle fluxes of electrons and multiple ions including Tungsten (W) is modeled within the integrated modeling platform JETTO [Romanelli M et al PFR 2014], using first principle-based codes : namely, QuaLiKiz [Bourd…

Preprint Published
2018
UKAEA-CCFE-PR(18)12

Alfvén Eigenmodes (AEs) are routinely seen in present-day tokamaks and stellarators with energetic particles and they represent an attractive form of MHD spectroscopy that provides valuable information on background plasma and on the energetic particles. Possible use of AEs is assessed for MHD spectroscopy of plasma with high-velocity pellet injec…

Preprint Published
2017
CCFE-PR(17)74

Reference scenarios for the JT-60SA tokamak have been simulated with one-dimensional transport codes to assess the stationary state of the flat-top phase and provide a profile database for further physics studies (e.g. MHD stability, gyrokinetic analysis) and diagnostics design. The types of scenario considered vary from pulsed standard H-mode to a…

Preprint Published
2016
CCFE-PR(16)19

ELM control may be essential to develop ITER scenarios with a reasonable lifetime of divertor components, whilst ELM pacing may be essential to develop stationary ITER scenarios with a tungsten divertor. Resonant magnetic perturbations (RMPs) have mitigated ELMs in high collisionality plasmas in JET. The efficacy of RMPs in mitigating the ELMs is f…

Preprint Published
2016
CCFE-PR(16)09

The complete refuelling of the plasma density loss (pump-out) caused by mitigation of Edge Localised Modes (ELMs) is demonstrated on the ASDEX Upgrade tokamak. The plasma is refuelled by injection of frozen deuterium pellets and ELMs are mitigated by external resonant magnetic perturbations (RMPs). In this experiment relevant dimensionless paramete…

Preprint Published
2015
CCFE-PR(15)68

It has long been recognised that the shortage of external tritium sources for fusion reactors using D-T, the most promising fusion fuel, requires all such fusion power plants (FPP) to breed their own tritium. It is also recognised that the initial start-up of a fusion reactor will require several kilograms of tritium within a scenario in which radi…

Preprint Published
2015
CCFE-PR(15)44

The effects of poloidal asymmetries and heated minority species are shown to be necessary to accurately describe heavy impurity transport in present experiments in JET and ASDEX Upgrade. Plasma rotation, or any small background electrostatic field in the plasma, such as that generated by anisotropic external heating can generate strong poloidal den…

Preprint Published
2015
CCFE-PR(15)29

ITER operations require effective fuelling of the core plasma for conditions in which neutral dynamics through the scrape-off layer (SOL) is expected to affect significantly the efficiency of gas penetration. On the basis of previous analysis for stationary conditions, pellets are foreseen to provide core fuelling of high-Q DT scenarios. In this pa…

Preprint Published
2015
CCFE-PR(15)03

The fuelling of plasmas by shallow frozen pellets with simultaneous mitigation of edge- localised modes (ELM) by external magnetic perturbation is demonstrated on the MAST tokamak. In these plasmas post-pellet particle loss is dominated by ELMs. It is shown that the size of post-pellet ELMs can be controlled by external magnetic perturbations. Post…

Preprint Published
2015
CCFE-PR(15)48

Carbon and nitrogen impurity transport coefficients are determined from gas puff experiments carried out during repeat L-mode discharges on the Mega-Amp Spherical Tokamak (MAST) and compared against a previous analysis of helium impurity transport on MAST. The impurity density profiles are measured on the lowfield side of the plasma, therefore this…

Preprint Published