-
UKAEA-CCFE-PR(18)262018
Pre-conceptual design studies for a European Demonstration Fusion Power Plant (DEMO) have been in progress since 2014. At this stage, while a range of design options are being considered, it is essential that assessments are carried out of the safety and environmental impact of these options. This is not only to ensure that the DEMO plant is op…
-
2018
Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during prima…
-
UKAEA-CCFE-CP(20)1022018
The JET exploitation plan foresees D-T operations in 2019-2020. With respect to the first D-T campaign in 1998, when JET was equipped with a carbon wall, the experiments will be conducted in presence of a beryllium-tungsten ITER-like wall and will benefit from an extended and improved set of diagnostics and higher available additional heating power…
-
UKAEA-CCFE-CP(20)982018
-
UKAEA-CCFE-CP(20)1042018
During the pre-conceptual design phase of fusion devices such as the European demonstration fusion power plant (DEMO), systems codes provide a fast evaluation of optimal design points and highlight high impact areas. However, determining or evaluating a design point at such an early stage comes with uncertainties in many of the design parameters. T…
-
UKAEA-CCFE-CP(20)812018
The Alfvén Eigenmode Active Diagnostic system (AEAD) has undergone a major upgrade and redesign to provide a state of the art excitation and real-time detection system for JET. The new system consists of individual 4kW amplifiers for each of the six antennas, allowing for increased current, separate excitation and real time control of relative …
-
UKAEA-CCFE-CP(20)792018
The Chinese Fusion Engineering Test Reactor (CFETR) bridges the gap between ITER and a demonstration fusion power plant (DEMO). The primary objectives of CFETR are: demonstrate tritium self-sufficiency, ~1GW fusion power, operate in steady-state and have a duty cycle of 0.3-0.5 [1]. CFETR is in the pre-conceptual design phase and is currently envis…
-
UKAEA-CCFE-CP(20)772018
Neutral beam injection is one of the primary auxiliary heating systems for tokamak plasmas. Once the neutral beam leaves the neutraliser collisions with background neutral particles in the beamline and tokamak vessel re-ionises part of the neutral beam. These particles can be deflected by the tokamak magnetic field, potentially damaging unshielded …
-
UKAEA-CCFE-CP(20)762018
In 1998 Makhankov [1] described the concept of modular exchangeable plasma facing components (PFCs) based on liquid metal heat pipes which are radiatively cooled. Here we present results from recent experiments with a lithium filled tubular heat pipe owned by Sandia National Laboratories. The tantalum envelope (~20mm diameter by ~200mm long) was he…
-
UKAEA-CCFE-CP(20)722018
The spherical torus/tokamak (ST) is a potentially attractive configuration for narrowing scientific and technical gaps to a fusion demonstration power plant and as a more compact and/or modular fusion power source. Due to a reduced plasma surface area to volume ratio, the ST configuration offers the potential to access high power exhaust heat fl…
Showing 181 - 190 of 500 UKAEA Paper Results