-
UKAEA-CCFE-PR(23)1302023
A Toroidal Alfven eigenmode (TAE) has been observed to be driven by alpha particles in a JET deuterium-tritium internal transport barrier plasma. The observation occurred 50ms after the removal of neutral beam heating (NBI). The mode is observed on magnetics, soft-xray, interferometry and reflectometry measurements. We present detailed stability…
-
UKAEA-CCFE-PR(23)022023
A toroidal Alfven eigenmode (TAE) has been observed driven by alpha particles in the Joint European Torus (JET). The observation was made in dedicated deuterium-tritium experiments where radio-frequency (RF) heating was absent, in the so-called “afterglow” period when neutral beam heating was removed. Agreement with reduced and perturbative mod…
-
UKAEA-STEP-PR(23)052022
In this paper we present optimized actuator trajectories, evolving in time and space, of non-inductive ramp-up scenarios for the Spherical Tokamak for Energy Production (STEP). These trajectories are computed by solving a non-linear, multi-objective, constrained, finite-time optimal control problem. A method unique to STEP ramp-up studies that prov…
-
UKAEA-CCFE-PR(22)092022
Experiments in ASDEX Upgrade (AUG) and JET with the ITER-like wall (JET-ILW) are performed to separate the pedestal and core contributions to confinement in H-modes with different main ion masses. A strong isotope mass dependence in the pedestal is found which is enhanced at high gas puffing. This is because the ELM type changes when going fro…
-
UKAEA-CCFE-CP(23)392021
A key aim of the 2021 JET deuterium-tritium (D-T) experiments was to demonstrate steady high fusion power (10-15MW) with the ITER-like Be/W first wall. Plasmas were developed using D, repeated with T to investigate and mitigate isotope effects, and run with D-T to maximise fusion power. Compared with high current (q95~3) ‘baseline’ plasmas, …
-
UKAEA-CCFE-CP(20)1022018
The JET exploitation plan foresees D-T operations in 2019-2020. With respect to the first D-T campaign in 1998, when JET was equipped with a carbon wall, the experiments will be conducted in presence of a beryllium-tungsten ITER-like wall and will benefit from an extended and improved set of diagnostics and higher available additional heating power…
-
UKAEA-CCFE-PR(19)212019
The JET exploitation plan foresees D-T operations in 2020 (DTE2). With respect to the first D-T campaign in 1997 (DTE1), when JET was equipped with a carbon wall, the experiments will be conducted in presence of a beryllium-tungsten ITER-like wall (ILW) and will benefit from an extended and improved set of diagnostics and higher additional heating …
-
UKAEA-CCFE-PR(18)652018
During the 2015-2016 JET campaigns many efforts have been devoted to the exploration of high-performance plasma scenarios envisaged for DT operation in JET. In this paper we review various key recent hybrid discharges and model the combined ICRF+NBI heating. These deuterium discharges with deuterium beams had the ICRF antenna frequency tuned to mat…
-
CCFE-PR(16)192016
ELM control may be essential to develop ITER scenarios with a reasonable lifetime of divertor components, whilst ELM pacing may be essential to develop stationary ITER scenarios with a tungsten divertor. Resonant magnetic perturbations (RMPs) have mitigated ELMs in high collisionality plasmas in JET. The efficacy of RMPs in mitigating the ELMs is f…
-
2013
13MW of electron cyclotron current drive (ECCD) power deposited inside the q = 1 surface is likely to reduce the sawtooth period in ITER baseline scenario below the level empirically predicted to trigger neo-classical tearing modes (NTMs). However, since the ECCD control scheme is solely predicated upon changing the local magnetic shear, it is prud…
Showing 11 - 20 of 20 UKAEA Paper Results